Pseudocode Edition

2D Game Development:
From Zero to Hero

A compendium of the community
knowledge on game design and development

Copyright © 2019-2024 Daniele Penazzo

2D Game Development: From Zero To Hero (pseudocode edition, version 0.7.10) is distributed under the terms of

the Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 license.

If you want to view a copy of the license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or check the

LICENSE file in the book repository.

©0Ee

The PDF and EPub releases of this book can be found at the following address:

* https://therealpenaz9l.itch.io/2dgd-fOth (Official Itch.io Page)

This book’s source code can be found in the following official repositories:

* https://gitlab.com/Penaz/2dgd_fOth (Official GitLab Repository)

* https://github.com/2DGD-FOTH/2DGD_FOTH/ (Official GitHub Mirror Repository)

NO Al TRAINING: any use of this publication to train generative artificial intelligence (Al) technologies to generate

text is expressly prohibited.

This work shall be attributed to Daniele Penazzo and the "2D Game Development: From Zero To Hero” community,
to see a full list of the contributors, please check the CONTRIBUTORS file in the repository, or head to the Contributors

section in this book.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://therealpenaz91.itch.io/2dgd-f0th
https://gitlab.com/Penaz/2dgd_f0th
https://github.com/2DGD-F0TH/2DGD_F0TH/

Perseverance is the backbone of success.

Anonymous

To my family
To my friends, both international and not
To the ones who never give up

Daniele Penazzo

Contents

1

2

Foreword 1
Introduction 2
2.1 Why another game development book? Lo 2
2.2 Conventions used in thisbook 3
2.2.1 Logic Conventions e e e e 3

2.2.2 Code Listings e e 3
2.2.3 Block Quotes 3
2.2.4 BOXes 3

2.2.5 EngineUsed e e e e e 4
2.2.6 About editions L L L L e e 4

2.3 Structure of this Book e 5
The Maths Behind Game Development 9
3.1 Some useful symbols L L e 9
3.2 The modulo operator L e e e e e 9
3.3 Powers and ROOts L e 10
3.4 Equations L e 11
3.4.1 You can add or subtract any number on bothsides 11

3.4.2 You can multiple or divide any non-zero number on bothsides 11

3.5 Exponentiations and Logarithms 12
3.6 Limits 12
3.7 Derivatives e e 13
3.8 The Cartesian Plane o . e 14
3.9 Vectors e e e e e e 15
3.9.1 Adding and Subtracting Vectorso 15

3.9.2 Scaling Vectors e e 16
3.9.3 Dot Product e 17
3.9.4 Vector Length and Normalizationo 18

3.9.5 “Clamping” aVector e 18

3.10 Geometry L e e e e 19
3.10.1 Convex vs Concave polygons e e e e e e e 19
3.10.2 Self-intersecting polygons L 20
3.10.3 Straight Lines and their equations 20
3.10.3.1 Getting the equation of a straight line, given two points 21

3.10.3.2 Getting the equation, given the slopeandapoint 22

3.10.4 Projections L L e 22
3.10.4.1 Projecting arbitrary linesontheaxes 24

3.11 Matrices L e e 25

2D Game Development: From Zero To Hero

3.11.1 Whatisamatrix e 25
3.11.2 Matrix sum and subtraction oo oo oo 26
3.11.3 Multiplication by ascalar e 26
3.11.4 Transposition L e 26
3.11.5 Multiplication between matriceso Lo 27
3.11.6 Other uses for matrices L 29

3.12 Trigonometry L e e e 29
3.12.1 Radians vs Degrees i e e e e e 29
3.12.2 Sine, Cosineand Tangent Lo 30
3.12.3 Pythagorean Trigonometric Identity Lo 31
3.12.4 Reflections 31
3.12.5 Shifts 31
3.12.6 Trigonometric Addition and subtractiono oL 32
3.12.7 Double-Angle Formulae e 32
3.12.8 Inverse Formulas L e e 32

3.13 Numerical Analysis e e e e e e 33
3.13.1 Newton-Raphson method e e 33

3.14 Coordinate Systems on computers e e e e 34
3.15 Transformation Matrices L 35
3.15.1 Stretching L L e 35
3.15.2 Rotation e 36
3.15.2.1 Choosing the direction of the rotation 37

3.15.2.2 Rotating referred to an arbitrary point oo 38

3.15.3 Shearing L e e e 38

3.16 Basics of Probability e e e e e 39
3.16.1 A simple definition of probability oo o 39
3.16.2 Probability of independentevents Lo 39
3.16.3 Probability of mutually exclusiveevents oL 40
3.16.4 Probability of non-mutually exclusiveevents 41
3.16.5 Conditional Probability 42
3.16.6 Uniform Distributions 43
3.16.7 How probability isused ingames Lo 43
3.16.8 Tiered Prize Pools L e e 45
3.16.8.1 Introducing a “luck” stat 46

4 Some Computer Science Fundamentals 48
4.1 Number representations L e 48
4.1.1 The most used representationso 48
4.1.1.1 Decimal e e e e e 48

4.1.1.2 BiNAry e e e e e e e 48

CONTENTS 1\

2D Game Development: From Zero To Hero

4.2

4.3
4.4
4.5

4.6

4.7

4.8

4.9

4.1.1.3 Octal e e 49

4.1.1.4 Hexadecimal e 50

4.1.2 Converting between decimal and binary oL 51
4.1.2.1 Two'scomplement L e 52

4.1.2.2 Floating point e e 53

4.1.3 Converting between binaryandoctal 0. 53
4.1.4 Gray Code e 54
Basics of LOgic L e e e e e 54
4.2.1 Truth tables 55
4.2.2 Common operators L e e e e e e 55
4221 AND . .o 55

4222 OR . . . 55

4.2.2.3 NOT . . . e 56

4224 XOR . . . o o e 56

4.2.3 Logic operations vs bitwise operations 56
4.2.3.1 Packing more information withless oo 57

4.2.4 De Morgan’s Laws and Conditional Expressions 58
Algorithms L e e 58
Recursion L L 59
Programming Languages o e e e e e e e 61
451 Classifying programming languages« 0 v e e e e e e e 61
45.1.1 Byhowtheybuild 61

4.5.1.2 By Paradigm e 63

4.5.1.3 Bythe waytypesaredetermined 63

4.5.1.4 By the “strength” oftyping e 64

4.5.1.5 By memory management e e e 65

4.5.2 Languages available for thisbook oo oL 66
Computers are (not) precise L e e e e 66
4.6.1 Catastrophic cancellation e e e 68
Random Numbers are not really random 69
4.7.1 How to seed a random number generatoro 70
Estimating the complexity of algorithms Lo 72
4.8.1 O(1) . . o o 72
4.8.2 O(log(n)) . . . o e e e e s e e 73
4.8.3 O(N) . o o 73
4.8.4 O(n-log(n)) . . o o e e e e e e e e e e e 74
4.8.5 O(N?) o o o e 74
4.8.6 OR") o o 75
A primer on calculating the order of your algorithms 75
4.9.1 Some basiCs e e e e 75

CONTENTS \

2D Game Development: From Zero To Hero

4.10

4.11

4.12
4.13

4.9.2 What happens when we have more thanone big-O? 76
4.9.3 A problem with asymptotic complexity Lo oo 77
4.9.4 What do we do with recursive algorithms? oL 78
4.9.5 How do big-O estimates compare to each other? 78
Simplifying your conditionals with KarnaughMaps 79
4.10.1 “Don‘tcare”s e e e e e e 80
4.10.2 Amore complex map e e e e e e e e 82
4.10.3 Guided Exercise e 83
Object Oriented Programming o 0 o 0 v e e e e e e e e 85
4.11.1 Introduction L L e 85
4.11.2 Objects 85
4.11.3 Abstraction and Interfaces L 86
4.11.4 Inheritance and Polymorphism Lo 86
4.11.5 MIXINS e e 86
4.11.6 The Diamond Problem 87
4.11.7 Composition L L e e e e e 87
4.11.8 Composition vs. Inheritance L e e e e 88
4.11.9 “Composition over Inheritance” design oL 90
4.11.10 Coupling 91
4.11.11 The DRY Principle e e e 92
4.11.12 SOLID Principles e e e e e e e e 92
Designing entitiesasdata e 93
Reading UML diagrams o e 94
4.13.1 Use Case Diagrams o 0 i i e e e e e 94
4.13.1.1 Actors e e e 95
4.13.1.2 UseCases v v v i e e e e e e 96
4.13.1.3 Notes e 97
4.13.1.4 Sub-Use Cases i i e e 97

4.13.2 Class Diagrams 0 i e e e e e e e e e e e e e e e e 97
4.13.2.1 Classes o e e e e e 97
4.13.2.2 Interfaces e 98
4.13.2.3 Relationships between entities of the class diagram 98
4.13.2.4 NOtes e 101

4.13.3 Activity Diagrams e e 101
4.13.3.1 Startand End Nodes 102
4.13.3.2 Actions e e 102
4.13.3.3 Decisions (Conditionals) and loops e 102
4.13.3.4 Synchronization e 104
4.13.3.5 Swimlanes L e 104
4.13.3.6 Signals e e e e e e 105

CONTENTS Vi

2D Game Development: From Zero To Hero

4.14

4.15

4.16
4.17
4.18
4.19

4.20

4.13.3.7 NOtes e e 106
4.13.3.8 A note on activity diagrams e e 106

4.13.4 Sequence Diagrams e e e 107
4.13.4.1 Lifelines e 107
4.13.4.2 MeESSAQES . . .« . vt e e e e e e e e e e 108
4.13.4.3 Object Instantiation and Destruction, 108
4.13.4.4 Grouping and loops e e 109
4.13.45 Notes e 109

4.13.5 Otherdiagrams e e e e e e 110
Generic Programming L e e e e e 110
Data Structures L e e e 111
4.15.1 Graphs L e e e e 111
4.15.2 TreeS . . . e e 113
4.15.2.1 Depth-first Search e 114
4.15.2.2 Breadth-firstsearch 118

4.15.3 DynamiC Arrays e e e e e e e e e e e e 120
4.15.3.1 Performance Analysis e e e e e e e 120

4.15.4 Linked LiSts e e e 122
4.15.4.1 Performance Analysis e 123

4.15.5 Doubly-Linked Lists e e 124
4.15.6 Hash Tables e 125
4.15.7 Binary Search Trees (BST)« o o 0 e e e e e 126
4.15.8 Heaps e 127
4.15.9 Stacks . .. L e 128
4.15.10 QUEUES o v v e e e e 129
4.15.11 Circular QUEUES« . e e e e e e e e e e e 130
The principle of locality e e 131
Treating multidimensional structures like one-dimensionalones 131
Data Redundancy L e e e e e e e e e e 133
Introduction to Multi-Tasking L 135
4.19.1 Multi-Threading vs Multi-Processing oo 135
4.19.2 Coroutines e e 136
Introduction to Multi-Threading e 137
4.20.1 What is Multi-Threading 137
4.20.2 Why Multi-Threading? e 137
4.20.3 Thread Safety e e e e e 138
4.20.3.1 Raceconditions e e 138
4.20.3.2 Critical Regions e 140

4.20.4 Ensuring determinism L L e e 140
4.20.4.1 Immutable Objects e e e 140

CONTENTS \il

2D Game Development: From Zero To Hero

4.20.4.2 Mutex e e 140

4.20.4.3 Atomic Operations e e e e e 143

5 A Game Design Dictionary 144
5.1 Platforms e e 144
5.1.1 Arcade L e e e 144

5.1.2 Console e 145

5.1.3 Personal Computer e e e 145

5.1.4 Mobile e e e e 147

5.1.5 Web . . . e e e e e e e 147

5.2 INpUt DEeVICES e e e e e e e e 148
5.2.1 Mouse and Keyboard 148

5.2.2 Gamepad e e 148

5.2.3 Touch Screen e e 149

5.2.4 Dedicated Hardware 149

5.2.5 Other Input Devices o e e e 149

5.3 Game GENIeS o i e e e e 150
5.3.1 Shooters L e 150

5.3.2 Strategy e e e e e 150

5.3.3 Platformer 150

5.3.4 RPG . . . e e e e 151

5.3.5 MMO . . e e e e 151

5.3.6 Simulation L L e 151

5.3.7 Rhythm Games e e e e e e 151
5.3.8 Visual novels 152
5.3.9 Puzzle games 152

5.4 Miscellaneous e e 152
5.4.1 Emergent Gameplay L e e e e e e 152

6 Project Management Basics and tips 155
6.1 The figures of game design and development L L0 155
6.1.1 Producer/Project Manager e e 155

6.1.2 Game Designer e e e e e e e 156
6.1.3 Writer . . . o e e 156

6.1.4 Developer e e e 157

6.1.5 Visual Artist 158
6.1.6 Sound Artist . . . L L L e e 159
6.1.7 Marketing/Public Relations Manager oo 159
6.1.8 Tester . . . L e e e 160

6.2 Some general tips L 160
6.2.1 Be careful of featurecreep L 160
CONTENTS VIl

2D Game Development: From Zero To Hero

6.2.2 On projectduration L e 160

6.2.3 Brainstorming: the good, the bad andthewugly 161

6.2.4 OnSequels e 161

6.3 Common Errors and Pitfalls 162
6.3.1 Losing motivation L L e 162

6.3.2 The “Side Project” pitfall e e e 162

6.3.3 Making a game “inisolation” L 162

6.3.4 (Mis)Handling Criticism L e e 163
6.3.4.1 Misusing of the Digital Millennium Copyright Act 163

6.3.5 Not letting others test yourgame oL o 165

6.3.6 Being perfectionist L 165

6.3.7 Using the wrong engine L L e e 166

6.4 Software Life Cycle Models e 166
6.4.1 Ilteration versus Increment L L L L e 166

6.4.2 Waterfall Model 167
6.4.3 Incremental Model 167
6.4.4 Evolutionary Model e e e e e e 168

6.4.5 Agile Software Development 168
6.4.5.1 UserStories e e 169

6.4.5.2 SCrUM e e e 169

6.4.5.3 Kanban e e 170

6.4.5.4 ScrumBan 170

6.4.6 Lean Development L e 171
6.4.7 Wheretogofromhere 171

6.5 Version Control L e e 171
6.6 Metrics and dashboards 172
6.6.1 SLOC . . o o e 172

6.6.2 Cyclomatic Complexity L e e 172
6.6.2.1 How cyclomatic complexity is calculated 173

6.6.3 Code COVEerage v v v v e e e e e e e e 175
6.6.4 Code Smells e 175

6.6.5 Coding Style infractions L 175
6.6.6 Depth of Inheritance e 176

6.6.7 Number of methods / fields /variables 176
6.6.8 Number of parameters L e 176
6.6.9 Othermetrics e e 176

7 Writing a Game Design Document 178
7.1 What is a Game Design Document L e e e e e e e e e 178
7.2 Possible sections of a Game Design Documento 178

CONTENTS IX

2D Game Development: From Zero To Hero

7.2.1 Project Description L e e e 178

7.2.2 Characters e e 179

7.2.3 Storyline e e 179
7.2.3.1 Thetheme 179

7.2.3.2 Progression i e e e e e e e e e 180

7.2.4 Levels and Environments L L e 180

7.2.5 Gameplay e 180
7.25.1 Goals e e 180

7.2.5.2 GameMechanics L 181

7.2.5.3 Skills . . . e 181

7.2.5.4 Items/POWErupsS o i e e e e e e e e e 182

7.2.5.5 Difficulty Management and Progression 182

7.2.5.6 Losing Conditions L e e 183

7.2.6 Graphic Styleand Art e e 183

7.2.7 Sound and MUSIC L e 183

7.2.8 UserInterface e 184

7.2.9 Game Controls e 184
7.2.10 Accessibility Options L e 185
7.2.11 TOOIS . . o 185
7.2.12 Marketing L e e 185
7.2.12.1 Target Audience e e e e e 186

7.2.12.2 Available Platforms 186

7.2.12.3 Monetization 186

7.2.12.4 Internationalization and Localization 187

7.2.13 Other/Randomldeas e e 187

7.3 Wheretogofromhere e 187
8 The Game Loop 190
8.1 The Input-Update-Draw Abstraction 190
8.2 INPUL . . . e e e e e 191
8.2.1 Events vs Real Time Input 191

8.3 TiMING yourloop e e e e e e e e e 192
8.3.1 Whatisatimestep 192

8.3.2 Fixed Time Steps o e e e 192
8.3.3 Variable Time Steps e 193
8.3.4 Semi-fixed Time Steps e e 193

8.3.5 Frame Limiting e 194
8.3.6 Frame Skipping/Dropping L e e 195
8.3.7 Multi-threaded LOOpSs e e e e e e e 195

8.4 Issues and possible solutions L L e e e e e 196

CONTENTS X

2D Game Development: From Zero To Hero

8.4.1 Frame/Screen Tearing L e e e e e 196

8.5 Drawing to screen L e e e e e e e e e 196
8.5.1 Clearingthescreen e 197

9 Collision Detection and Reaction 199
9.1 Why Collision Detection is done in multiple passeso 199
9.2 Narrow-Phase Collision Detection: did it really collide? 199
9.2.1 Collision Between Two Points 200

9.2.2 Collision Between APointandaCircle 201

9.2.3 Collision Between Two Circles e 202

9.2.4 Collision Between Two Axis-Aligned Rectangles (AABB) 204

9.2.5 Line/Point Collision e e 206
9.2.6 Line/Circle Collision e e 208

9.2.7 Point/Rectangle Collision e 211
9.2.8 Point/Triangle Collision e 211
9.2.9 Circle/Rectangle Collision e e e e e e 213
9.2.10 Line/Line Collision L e e 214
9.2.11 Line/Rectangle Collision e 217
9.2.12 Point/Polygon Collision e 218
9.2.12.1 Jordan Curve Theorem v i i i e e e e e 218

9.2.12.2 Thinking outside the box: polygon triangulation 220

9.2.12.3 Bounding Boxes e 221

9.2.12.4 Point/Polygon collision detection using triangulation. 223

9.2.13 Circle/Polygon Collision e e e e e e e 226
9.2.14 Line/Polygon Collision e 228
9.2.15 Polygon/Polygon Collision e 229
9.2.16 Non-convex polygons collisiono 230
9.2.16.1 Polygon triangulation: thereturn oL Lo o 232

9.2.17 Pixel-Perfect collision 233

9.3 Broad-phase collision detection: is a collision even possible? 234
9.3.1 The Brute Force Method 235

9.3.2 Building Quad Trees o e e e e e e e 236
9.3.2.1 A more precise definition oL 237

9.3.2.2 Queryingquadtreeso e e e e 238

9.3.3 Building AABB-Trees e e e e 238
9.3.3.1 Querying AABB-trees e e 239

9.3.4 CollisSion groups o e e 241

9.4 Other Collision Detection Methods 242
9.4.1 Calculating the position of tiles e 242

9.4.2 The “Tile + Offset” Method 245

CONTENTS Xl

2D Game Development: From Zero To Hero

9.5 Collision Reaction/Correction e
9.5.1 HitBoxes vs HurtBoxes o

9.5.2 Collision Reaction Methods,
9.5.2.1 Anaiveapproach

9.5.2.2 Shallow-axis based reaction method

9.5.2.3 Interleaving single-axis movement and collision detection

9.5.2.4 The “Snapshot” Method,

9.5.3 When two moving items collide oL

9.6 Common Issues with time-stepping Collision Detection
9.6.1 The “Bullet Through Paper” problem

9.6.2 PrecisionIssues L
9.6.3 One-way obstacles L

9.7 Separating Axis Theorem L
9.7.1 Why only convex polygons?

9.7.2 How itworks
9.7.2.1 Findingtheaxestoanalyze

9.7.2.2 Projecting the shapes into the axes and exiting the algorithm

9.7.2.3 From arbitrary axesto “xandy”

9.8 Ray Casting
9.8.1 What is Ray Casting? e

9.8.2 Other uses for ray casting: Pseudo-3D environments

10 Scene Trees

10.1 Whatisascene
10.2 Scene trees and their functionalities oo

10.2.1 How scene trees can make drawing entities easier
10.3 Implementing ascenetreeo e

11 Cameras

11.1 Screen Space vs. Game Space oo e e e e
11.2 Cameras and projections L e e e e e e e
11.3 Most used camera transitionsand types oL
11.3.1 StaticCamera e
11.3.2 GridCamera e e e e
11.3.3 Position-Tracking Camera L
11.3.3.1 Horizontal-Tracking Camera

11.3.3.2 Full-Tracking Camerao

11.3.4 CameraTrap v v i e e e e e e
11.3.5 Look-Ahead Camera e
11.3.6 Hybrid Approaches

11.4 Clamping your camera positiono

CONTENTS

Xl

2D Game Development: From Zero To Hero

12 Game Design Tips 271
12.1 Tutorials L e e 271
12.1.1 Do not pad tutorials 271
12.1.2 Integrate tutorialsinthelore 271
12.1.3 Let the player explorethecontrols o 271

12.2 Consolidating and refreshing the game mechanics 272
12.2.1 Remind the player about the mechanics they learned 272
12.2.2 Introduce new ways to use old mechanics 272

12.3 Rewarding the player L 272
12.3.1 Reward the player for their “lateral thinking” 272
12.3.2 Reward the player for theirtenacity L. 273
12.3.3 Reward the player for exploring e 274
12.3.4 Reward the player for not immediately following the given direction 274
12.3.5 Reward the player for not trusting you entirely 274
12.3.6 Reward Backtracking (but don’t make it mandatory!) 275
12.3.7 The “lives” system L L e e e e e 275
12.3.7.1 1-UPS . . . o o e e e 276

12.3.7.2 Otherapproaches e 276

12.4 Loading Screens e e e 277
1241 What to putin aloadingscreeno 277
12.4.2 Letting the player “exit” the loadingscreen 0o 277
12.4.3 Avoiding a loading screen altogethero oL 278

12.5 Designing the story and gameplay flowo 278
1251 Linear Gameplay e e e e 278
12.5.2 Branching gameplay L e e e e e e 279
12.5.3 Parallel gameplay e 280
12.5.4 Threaded gameplay L e 280
12.5.5 Episodic gameplay e e 281
12.5.6 Adding parallel paths e e e 281
12.5.7 Looping Gameplay e e e 282
12.5.7.1 Soft-reset mechanics 282

12.6 Some game genres and their characteristics Lo 283
12.6.1 Roguelikes and Rogue-lites e 283
12.6.1.1 Use of pseudo-randomness and procedural generation 283

12.6.1.2 Permadeath 283

12.6.1.3 Turn-based Gameplay e e e e e 284

12.6.1.4 Lack of mode-basedgameplay 284

12.6.1.5 Multiple ways to accomplish (or fail!) atask 284

12.6.1.6 Resource Managementiskey Lo 284

12.6.1.7 Peacewasneveranoption. e e 284

CONTENTS Xl

2D Game Development: From Zero To Hero

12.6.1.8 Dealing with theunknowno 284

12.7 Tips and Tricks L e e e e e e 285
12.7.1 General PUrpose L e e 285
12.7.1.1 Make that last Health Pointcount 285

12.7.1.2 Avoiding a decision can be a decisionitself 285

12.7.1.3 Telegraphing e e e e e e 286

12.7.1.4 MiNigames e e e e e e 286

12.7.1.5 When unlockables are involved, be balanced 287

12.7.2 Shooters e 287
12.7.2.1 Make the bullets standouto 287

12.7.3 RPGS . . . o 288
12.7.3.1 Grindingand farmingo e 288

12.7.3.2 Leveling Curves e e e e e e e e e e 289

12.7.3.3 “Mastering” e e e e e 290

12.8 Perceived Fairness L L e 291
12.8.1 You don’t need precise collision detectiono 291
12.8.2 Immediate dangers should be well visible 0oL 292

12.9 Miscellaneous L e e e e 293
12.9.1 You cannot use the “Red Cross” ingames e 294
12.9.2 Auto-saving L e e e e e 294
12.9.3 Feedback isimportant L e e e 294

13 Creating your assets 297
13.1 AssSUMPLIONS e e e e e e e e e e e 297
13.2 GraphiCs e e 297
13.2.1 Some computer graphics basicso Lo Lo 297
13.2.1.1 The “colorwheel” 297

13.2.1.2 Colorrepresentations e e e e e 298

13.2.1.3 Primary, Secondary and Tertiary colors 300

13.2.1.4 Analogous Colors L e 300

13.2.1.5 Complementary Colors e 300

13.2.1.6 ColorDepth e e e e e e 301

13.2.1.7 Direct Colorvs. Indexed Color 304

13.2.1.8 LosslessFormats 304

13.2.1.9 Lossy Formats e 304

13.2.1.10 TransparenCy v v v v v e e e e e e e e e e e e 305

13.2.1.11 Texture Filtering e 305

13.2.2 General TIPS e e e e e e e 306
13.2.2.1 Practice, Practice, Practice... o 306

13.2.2.2 References areyourfriends 306

CONTENTS XIV

2D Game Development: From Zero To Hero

13.2.2.3 Don’'t compare your styletoothers’ 306
13.2.2.4 Studyotherstyles e e 306
13.2.2.5 Learn to deconstruct objects intoshapes 307

13.2.3 Sprite sheets L 307
13.2.3.1 Sprite SheetGotchas e 308

13.2.4 Virtual Resolution e 309
13.2.5 Using limited color palettes 310
13.2.5.1 Dithering L e 310
13.2.5.2 Palette Swapping e e e e 312

13.2.6 Layering and graphics L L e 312
13.2.6.1 Detail attracts attentiono 312
13.2.6.2 Use saturation to separate layers further 313
13.2.6.3 Movement is yet another distraction00 313
13.2.6.4 Use contrastto youradvantage 313
13.2.6.5 Findexceptions. 314
13.2.6.6 Summarizing Layering Lo 314

13.2.7 Pixel Art . . . o e e 316
13.2.7.1 What pixel artis and whatitisnot 316
13.2.7.2 Tools e e 316
13.2.7.3 Layers e e e e e e e 317
13.2.7.4 Sub-pixel animation with palettecycling 317

13.2.8 Normal Mapping e e e 317
13.2.8.1 Asimpleexample 318

13.2.9 Tipsand Tricks L e e e e 320
13.2.9.1 Tileso 320
13.2.9.2 Spritesand icons e e e e e e 322

13.3 Sounds And MUSIC L L e e e e 323
13.3.1 Some audiobasics L e e 323
13.3.1.1 SampleRate e e e e e e 323
13.3.1.2 BitDepth e e 324
13.3.1.3 LosslessFormats 325
13.3.1.4 Lossy Formats e 325
13.3.1.5 CHpPINg . . . o o e e e e e 325

13.3.2 Sound Synthesis L 326
13.3.2.1 AMSynthesis L e 326
13.3.2.2 FMSynthesis e e e e e e e 327
13.3.2.3 FM Synthesis vs Sample-based music o000 327

13.3.3 Basic Wave Forms L e 328
13.3.3.1 SineWave e 328
13.3.3.2 SquareWave e e e e e e e e e e e 329
CONTENTS XV

2D Game Development: From Zero To Hero

13.3.3.3 Triangle Wave L e 329
13.3.3.4 SawtoothWave e 329
13.3.3.5 NOISE . . . o v o e 330
13.3.4 ADSR Envelope e 330
13.3.4.1 Attack e 331
13.3.4.2 DECAY . . . v e e e e e 331
13.3.4.3 Sustain e 331
13.3.4.4 Release e 332
13.3.5 Digital Sound Processing (DSP) e 332
13.3.5.1 Reverb e e 333
13.3.5.2 Pitch Shift e 333
13.3.5.3 Filtering e 333
13.3.5.4 Doppler Effect e 333
13.3.6 Simulating older consoles’ audio 334
13.3.6.1 Commodore Vic20 e e 334
13.3.6.2 Commodore 64 e e e e e e 334
13.3.6.3 Commodore Amiga v v v e e e e e e e e e e e e e e e e 335
13.3.6.4 Sega Master System /GameGearo 336
13.3.6.5 Sega Genesis/MegaDrive 336
13.3.6.6 NES e 336
13.3.6.7 SNES 337
13.3.6.8 Game Boy e e e 337
13.3.6.9 AdLib/SoundBlaster 338
13.3.7 “Swappable” sound effects L L L 338
13.3.8 Some audio processing tips L e e e e e e e 338
13.3.8.1 Prefer cuttingoverboosting 338
13.3.9 DAW BasiCS o o o i e e e e e e e e 339
13.3.9.1 Whatisa DAW Software? 339
13.3.9.2 ThePianoRoll e e 339
13.3.10 Music Tracker Basics o e e e 340
13.3.10.1 What is a Music Tracker Software? 340
13.3.10.2 Samples e e e e 341
13.3.10.3 Instruments L e e e 341
13.3.10.4 Channels e e 342
13.3.10.5 Patterns e e e e 342
13.3.11 Basic Rhythms e e e e e 342
13.3.11.1 Fouronthefloor e 342
13.3.11.2 Four on the floor with off-beat hi-hats 343
13.3.11.3 Asimplerock beat oL e 343
13.3.12 Adaptive Music e e e e e e e 343

CONTENTS XVI

2D Game Development: From Zero To Hero

13.4 Fonts e 343
13.4.1 Font Categories e e e e 343
13.4.1.1 Serif and Sans-Seriffonts Lo 344

13.4.1.2 Proportional and Monospaced fonts 344

13.4.2 Using texturestomaketext Lo 345
13.4.3 Using Fontsto make text e e 347

13.5 Shaders e e 347
135.1 What areshaders 347
13.5.2 Shader Programming Languageso e e 347
13.5.3 The GLSL Programming Language e 348
13.5.3.1 Thedatatypes e 348

13.5.4 Some GLSL Shaders examples L 349

14 Design Patterns 351
14.1 Creational Design Patterns L e 351
14.1.1 Singleton Pattern L L e e e e e 351
14.1.2 Dependency Injection L e 353
14.1.3 Prototype L 355

14.2 Structural Design Patterns L L e e 355
14.2.1 Flyweight 356
14.2.2 Component/Composite Pattern e 357
14.2.3 Decorator e e 359
14.2.4 Adapter L e e 360
14.2.4.1 Object Adapter e e e e e e e 360

14.2.4.2 Class Adapter e 361

14.2.5 Facade L 361
14.2.6 ProxXy . . . o e e e 363

14.3 Behavioural Design Patterns L e e e e e 365
14.3.1 Command Pattern L L e 365
14.3.2 Observer Pattern e 366
14.3.3 Strategy L e e e 368
14.3.4 Chain of Responsibility e e e e e e 369
14.3.5 Visitor o e 370

14.4 Architectural Design Patterns L L e 370
14.4.1 Service Locator L e e 371

15 Useful Containers and Classes 372
15.1 Resource Manager e e e e e 372
15.2 Animator L e e 372
15.3 Finite State Machine L 373
154 Menu Stack L e 375
CONTENTS XVl

2D Game Development: From Zero To Hero

15.5 Particle Systems

1551
15.5.2
15.5.3

15.6 Timers

15.6.1

15.7 Inbetweening

15.7.1

15.8 Chaining

Accounting for “leftover time”
15.6.1.1 A naive solution

15.6.1.2 A different approach

Particles e e
Emitters

Force Applicationo

Bouncing

16 Artificial Intelligence in Videogames

16.1 Path Finding

16.1.1

16.1.2

16.1.3

16.2 Finite state machines
16.3 Decision Trees
16.4 Behaviour Trees

16.5 Tips and tricks

16.5.1
16.5.2

16.1.1.1 2D Grids
16.1.1.2 Path nodes

16.1.1.3 Navigation meshes
16.1.2.1 Manhattan Distance heuristic
16.1.2.2 Euclidean Distance heuristic

Algorithms

16.1.3.2

“Jump when the player shoots”

Representingourworld

Heuristics e

16.1.3.1 A simple “Wandering” Algorithm

16.1.3.3 The Greedy “Best First” Algorithm
16.1.3.4 The Dijkstra Algorithm
16.1.3.5 The A* Algorithm

Distance-based patterns
16.5.2.1 “Ranged pattern”
16.5.2.2 “Melee pattern”

17 Other Useful Algorithms

17.1 World Generation

17.1.1
17.1.2
17.1.3

Midpoint Displacement Algorithm
Diamond-Square Algorithm

Maze Generation L o o

A slightly better “Wandering” algorithm

CONTENTS

XV

2D Game Development: From Zero To Hero

17.1.3.1 Randomized Depth-First Search (Recursive Backtracker) 418

17.1.3.2 Randomized Kruskal’s Algorithm 423

17.1.3.3 Recursive Division Algorithm 426

17.1.3.4 Binary Tree Algorithm 428

17.1.3.5 Eller's Algorithm e 431

17.2 Dungeon Generation L e e e e e e e e 432
17.3 Noise Generation L L e 432
17.3.1 Randomized Noise (Static) 432
17.3.2 Perlin Noise e 433

17.4 Animation L L L e e e e 434
17.4.1 Skeleton animation L L e 434

18 Procedural Content Generation 435
18.1 What is procedural generation (and whatitisn’t) Lo 435
18.2 Advantages and disadvantages L Lo 436
18.2.1 Advantages L e e e e e e 436
18.2.1.1 Lessdiskspace needed e 436

18.2.1.2 Larger games can be created with lesseffort 436

18.2.1.3 Lowerbudgetsneeded 437

18.2.1.4 More variety and replayability oo 437

18.2.2 Disadvantages e e e 437
18.2.2.1 Requires more powerful hardware 437

18.2.2.2 LessQuality Control e 437

18.2.2.3 Worlds can feel repetitive or “lacking artistic direction” 437

18.2.2.4 You may generate somethingunusable 438

18.2.2.5 Story and set game events are hardertoscript 438

18.3 Whereitcanbeused L e 438
18.4 Procedural Generation and Difficulty Management 439
18.4.1 Static difficulty 439
18.4.2 Adaptive Difficulty e 439
18.4.2.1 Rubberbandingo 439

18.4.3 Static vs. Adaptive Difficulty e 440

19 Developing Game Mechanics 441
19.1 General PUrpose L e e e e e e 441
19.1.1 I-Frames L e e 441
19.1.2 Tilemaps e e e e e e e e 442
19.1.2.1 RectangularTilemaps L 442

19.1.2.2 Hexagonal Tilemaps i e e e e 443

19.1.2.3 Isometric Tilemaps e e e 445

19.1.3 Scrolling Backgrounds and Parallax Scrolling 446

CONTENTS XIX

2D Game Development: From Zero To Hero

19.2

19.3

19.4

19.5

19.1.3.1 Infinitely Scrolling Backgroundso 446
19.1.3.2 Parallax Scrolling e e e e e e e e e 447

19.1.4 Avoid interactions between different input systemso 450
19.1.5 Sprite Stenciling/Masking L 450
19.1.6 Loading SCreens e e e e e e e 450
19.1.7 Simulating Inertia L e e e e e e 451
19.1.8 Corner correction L. e e e e e 456
2D Platformers e e e e e 457
19.2.1 Simulating Gravity L e e 457
19.2.2 Avoiding “Floaty Jumps” e 458
19.2.3 Making jumps “float differently” o 459
19.2.4 Ladders 460
19.2.5 Walking on slanted ground L 461
19.2.6 SEaIrS . . . e e e 461
19.2.7 Ledge Grabbing e 461
19.2.8 Jump Buffering L e 461
19.2.9 Coyote Time o e e e e e e e e e 462
19.2.10 TiMed JumPS e e e e e e e e e e 463
19.2.11 WallJumps e e e e 464
19.2.12 Screen Wrap o v e e e e e e e e 464
Top-view RPG-Like Games e e e e e e 464
19.3.1 Managing height 464
19.3.1.1 Fakingit e e 464
19.3.1.2 Managing heightforreal o 466
Rhythm Games e e e e e e e 466
19.4.1 Theworldoflag 466
19.4.1.1 Inputlag e e e e e 466
19.4.1.2 VideoLag o o e e e e e e e 466
19.4.1.3 Audiolag. e e e e e e 467
19.4.1.4 LagTests o o e e e e e 467

19.4.2 Synchronizing with the Music oL 468
19.4.2.1 Time domain vs. Frequency Domaino 468
19.4.2.2 The Fast Fourier Transform e 469
19.4.2.3 BeatDetection 469

“Bullet Hell” Style Games« e e e 469
19.5.1 Bullets e 469
19.5.2 The Ship Hitbox 470
19.5.3 Screen-clearing bombs L L 471
19.5.4 Clearing bullets on patternchangeso 471
19.5.5 Find other chances to clearsomebullets 471

CONTENTS XX

2D Game Development: From Zero To Hero

19.5.6 Turn enemy bullets into collectibles at the end of abossfight 471
19.5.7 The “Chain Meter” e 471
19.5.8 Managing the player’'sdeath 472
19.5.9 The Enemy Al e 472
19.5.10 Be fair to the player, but also to thecomputer 473
19.5.11 Inertia o . e e e 473
19.5.12 Some examples e e 473

19.6 Match-x Games e 474
19.6.1 Managing and drawing thegrido 474
19.6.2 Finding and removing Matcheso 474
19.6.2.1 Why don’t we delete the matches immediately? 476

19.6.3 Replacing the removed tiles and applying gravity 477

19.7 CULSCENES o e e e 479
19.7.1 VIdeOoS e e 479
19.7.2 Scripted Cutscenes e e 479

20 Balancing Your Game 481
20.1 Do not annoy the player L e 481
20.2 Favour the player when possible L 481
20.3 Difficulty curves L e e e e e e 482
20.3.1 Simple Lines e e 482
20.3.2 FlatLine e e 482
20.3.2.1 LineariIncrease e e e 483

20.3.2.2 LogarithmicLine e e 483

20.3.2.3 Exponential Line 484

20.3.3 Wave patterns L e 485
20.3.3.1 Linearly Increasingwaveo e e e e e 485

20.3.3.2 Logarithmically Increasingwave 0 e e 485

20.3.4 Interval Patterns 486
20.3.4.1 SimplelInterval e e 486

20.3.4.2 WideningInterval e 487

20.3.4.3 Widening Interval with Logarithmictrend 488

20.3.5 Thisis not everything 488
20.3.5.1 Sawtooth pattern. L 488

20.3.5.2 Whatnottodo 489

20.3.5.3 Beyond difficulty 490

20.4 Economy L e e e 490
20.4.1 Supply and Demand L L e 490
20.4.2 Money sources and Sinks L L L e e e e e e 491
20.4.3 Inflation L e e e 492
CONTENTS XXI

2D Game Development: From Zero To Hero

20.4.4 Deflation e 492

20.5 AprimeronCheating L e e e e e e e e 492
20.5.1 Information-based cheating L 493
20.5.2 Mechanics-based cheating 493
20.5.3 Man-in-the-middle 493
20.5.4 Low-level exploits L e e e 493

20.6 How cheating influences gameplay and enjoyability 494
20.6.1 Single Player L e e e e 494
20.6.2 Multiplayer L e e e e 494
20.6.2.1 P2P . . . L e 494

20.6.2.2 Dedicated Servers e 496

20.7 Cheating protection L L e e 497
20.7.1 Debug Mode vs Release Mode L 498

20.8 Some common exploits L L L e e e e 498
20.8.1 Integer Under/Overflow e 498
20.8.1.1 How the attackworks 499

20.8.2 Repeatattacks L e e e 499

21 Accessibility in video games 501
21.1 What accessibility is and whatitisnot 501
21.2 Uland HUD Scaling o e e e e e e 501
21.3 Subtitles L 501
21.4 Mappable Buttons L L e e 501
21.5 Button Toggling L e e e e e 502
21.6 Dyslexia e 502
21.6.1 Text Spacing e 502
21.6.2 Fonts 502

21.7 “Slow MOde” e e e e 502
21.8 Colorblind mode e e e 502
21.9 No Flashing Lights e 503
21.10 Nomotionblur e 503
21.11 Reduced Motion e 503
21.12 Assisted Gameplay e e 503
21.13 Controller Support e e e e e e e 503
21.14 Somespecial cases L e e e e 504
22 Testing your game 505
22.1 Whentotest e e 505
22.1.1 Testing “as an afterthought” 505
22.1.2 Test-Driven Development L 505
22.1.3 The “Design to test” approach oL e 505

CONTENTS XXII

2D Game Development: From Zero To Hero

22.1.4 You won't be able to test EVERYTHING 505

22.2 MOCKING o e e e e e e e e e 506
22.3 Typesoftesting L e e e 506
22.3.1 Automated Testing 506
22.3.2 Manual Testing L e e e e 507

22.4 Unit Testing o o e e e e e e e 507
22.5 Integration Testing L L e 508
22.6 Regression Testing L e e e e e e 508
22.7 Playtesting L e e e e 508
22.7.1 In-House Testing e 508
22.7.2 Closed Beta Testing e 509
22.7.3 OpenBetaTesting L e e 509
22.7.4 A/BTesting e e 509

23 Profiling and Optimization 510
23.1 Profiling yourgame L e e e e e 510
23.1.1 Does your application really need profiling? 510
23.1.1.1 Does your FPS counter roam around a certain “special” value? 510

23.1.1.2 Is the animation of your game stuttering but the FPS counteris fine? 510

23.1.2 First investigations L L e e e 510
23.1.2.1 Isyour game using 100% of the CPU? 510

23.1.2.2 Isyour game overloading your GPU?o 511

23.1.2.3 Is your game eating up more and more RAM as it's running? 511

23.2 Optimizing your game e e e e e e 512
23.2.1 Working with references vs. returningvalues 512
23.2.2 Optimizing Drawing e e 513
23.2.2.1 Off-screenobjects L 513

23.2.3 Reduce the calls to the Engine Routines 513
23.24 Entity Cleanup and Memory leaks L 514
23.2.5 Using analyzers to detect Memory Leakso oL 515
23.2.5.1 StaticScanners. e e 515

23.2.5.2 Dynamictestingtools e e 515

23.2.6 Resource Pools 515
23.2.7 Lookup Tables L e e 517
23.2.8 Memoization L L e 517
23.2.9 Approximations L L e e 520
23.2.10 Eagervs. Lazy Evaluation 520
23.2.10.1 Eagerapproach L e 521

23.2.10.2 Lazy approach e e e e 521

23.2.11 Detach your updating fromdrawing 522

CONTENTS XX

2D Game Development: From Zero To Hero

23.2.12 Be mindful of how you query your data structures 522

23.3 Tips and tricks L e e e e e e 523
23.3.1 Be mindful of your “updates” L 523
23.3.2 Use the right data structures forthejob 523
23.3.3 Dirty Bit e 524
23.34 Far-Away entities (Dirty Rectangles) e 525
23.3.5 Tweening is better than animating Lo 525
23.3.6 Removedead code e 525

23.4 Non-Optimizations e e e 526
23.4.1 “Switches are faster than IFs” L 526
23.4.2 Blindly Applying Optimizations 528

24 Marketing your game 530
24.1 An Important Note: Keep your feetontheground, 530
24.2 The importance of being consumer-friendlyo 530
24.3 Pricing e e e e e e 531
24.3.1 Penetrating the market withalow price 531
24.3.2 Giving off a “premium” vibe with a higherprice 531
24.3.3 The magic of “9” e e e 532
24.3.4 Launch Prices e e 532
24.3.5 Bundling e 532
24.3.6 Nothing beats the price of “Free” (Kinda) 533

24.4 Managing Hype L e e e e e e 533
24,5 Downloadable Content e 533
2451 DLC: whattoavoid e e 534
24.5.2 DLC: whattodo e 534

24.6 Digital Rights Management (DRM) o e 534
24.6.1 How DRM can break a game down theline., 536

24.7 Free-to-Play Economies and LootBoxes 536
24.7.1 Microtransactions L 536
24.7.1.1 The human and social consequences of Lootboxes 536

24.7.2 Free-to-Play gaming and Mobile Games e e 537

24.8 Assets and asset Flips L 538
24.9 Crowdfunding L e e e e e 538
249.1 CommunicationIsKey L e e 539
24.9.2 Do not betray your backers 539
24.9.3 Don’tbegreedy L 539
2494 Stay on the “safe side” of planningo 540
24.9.5 Keep your promises, orexceedthem 0 e 540
24.9.6 A striking case: Mighty No. 9 540

CONTENTS XXIV

2D Game Development: From Zero To Hero

24.10 Engagementvs Fun L e e e e e e e 541
24.11 Streamers and Content Creators e 542
24.11.1 Thegamedevelopers'side e 542
24.11.2 The Streamers’side 542
24.11.3 Other entities and conclusions o 543

25 Keeping your players engaged 544
25.1 Communities L e e e e 544
25.1.1 Forums e e e 544
25.1.2 WIKIS . . e e e 544
25.1.3 Update Previews e e 544
25.1.4 Speedrunning L e e e e e e e 545
25.1.5 Streaming L L e e e e 546

25.2 Replayability e 546
25.2.1 Modding e e 546
25.2.2 Fan games L e e e e 547
25.2.3 Mutators L e e 547
25.2.4 Randomizing e 548
25.2.5 New Game+ L e e 548
25.2.6 Transmogrification L e e e e e e 548

26 Dissecting games: three study cases 551
26.1 A bad game: Hoshiwo miruhito e e e e 551
26.1.1 Introduction e 551
26.1.2 Balance lssues e 551
26.1.2.1 You can't beatstarterenemies oo 551

26.1.2.2 The Damage Sponge« v v v v i e e e e e e e e 551

26.1.2.3 You can’t run away from battles, but enemiescan00 L. 552

26.1.2.4 Statistics 552

26.1.3 Bad design choices e e 552
26.1.3.1 You get dropped in the middle of nowhere 552

26.1.3.2 Thestarting town isinvisible oL 553

26.1.3.3 TheJump Ability e 553

26.1.3.4 ltemsareinvisible L 553

26.1.3.5 Item management L L 553

26.1.3.6 Buying Weapons makes youweakero 553

26.1.3.7 Enemy Abilities e 554

26.1.3.8 Youcansoftlockyourself 554

26.1.4 Confusing Choices e e 554
26.1.4.1 Starting level forcharacterso 554

26.1.4.2 Slow overworld movement Lo 554

CONTENTS XXV

2D Game Development: From Zero To Hero

26.1.4.3 Exitingadungeonoratowno 554

26.1.4.4 TheHealthPointsUl 555

26.1.5 Inconveniencing the player L 555
26.1.5.1 Thebattlemenuorder 555

26.1.5.2 Everymenuisacommittal 555

26.1.5.3 Password saves e e e e e 555

26.1.5.4 Each character has theirown moneystash 556

26.1.6 Bugs and glitches L 556
26.1.6.1 Moonwalking and save warpingo e e 556

26.1.6.2 Thefinalmaze 556

26.1.6.3 Theendings e 557

26.1.7 ConclusionNs L e 557

26.2 The first good game - VVVVVV: Slim story and essential gameplay 557
26.2.1 A Slim story that holdsupgreat 557
26.2.2 Essential gameplay: easy to learn, hardtomaster 558
26.2.3 Diversified challenges L 558
26.2.4 GraphiCs e e e e e e e e e e 558
26.2.5 Amazing soundtrack L e e e 559
26.2.6 Accessibility Settings L 559
26.2.7 Post-endgame Modes L e e 559
26.2.8 User-generated content L e e e 559
26.2.9 “Speedrunnability” L 560
26.2.10 Characters are memorable, even if you don’t see themalot 560
26.2.11 Conclusion e e e 560

26.3 Another good game - Undertale: A masterclass in storytelling 560
26.3.1 The power of choice 560
26.3.2 The game doesn’t take itself very seriously (sometimes) 560
26.3.3 All the major characters are very memorable 561
26.3.4 The game continuously surprisestheplayer, 561
26.3.5 Player choices influencethegame o o 561
26.3.6 Great (and extensive!!) soundtracko 562
26.3.7 Conclusion L e e e e 562

27 Project Ideas 563
27.1 TICTAC-TOR . . . v v e e e e e e e 563
27.1.1 Basic Level 563
27.1.2 Advanced Level L 564
27.1.3 Master Level 564

27.2 Space Invaders L e e e e e 564
27.2.1 Basic Level 565

CONTENTS XXVI

2D Game Development: From Zero To Hero

27.2.2 Advanced Level Lo
27.2.3 Masterlevel
27.3 Breakout
27.3.1 BasicLevel
27.3.2 Advanced Level Lo
27.3.3 MasterLevel e
27.4 Shooter Arena
27.4.1 BasicLevel
27.4.2 Advancedlevel L
27.4.3 Master Level

28 Game Jams

28.1 Have Fun e
28.2 Stay Healthy
28.3 Stick to whatyouknowo

28.4 Hacking is better than planning (But still plan ahead!)

28.5 Graphics? Sounds? Music? FOCUS!
28.6 Find creativity in limitations
28.7 Involve Your Friends!
28.8 Write a Post-Mortem (and read some too!)
28.9 Most common pitfalls in GamejJams

29 Where To Go From Here

29.1 Collections of different topics
29.1.1 Books
29.1.2 Videos
29.1.3 Multiple formats o

29.2 Pixel Art
29.2.1 Multiple Formats

29.3 Sound Design L e
29.3.1 Multiple Formats e

29.4 Game Design e
2941 Books

29.5 Game Development L
29.5.1 Web Resourceso
29.5.2 Videos

29.6 References and Cheat Sheets

A Glossary

B Engines, Libraries And Frameworks

583

CONTENTS

XXVII

2D Game Development: From Zero To Hero

C Some other useful tools 593
D Free assets and resources 598
E Contributors 601

CONTENTS XXVII

2D Game Development: From Zero To Hero

1 Foreword

Every time we start a new learning experience, we may be showered by a immeasurable amount of doubts and
fears. The task, however small, may seem daunting. And considering how large the field of Game Development can

be, these fears are easily understandable.

This book is meant to be a reference for game developers, oriented at 2D, as well as being a collection of “best

practices” that you should follow when developing a game by yourself (or with some friends).

But you shouldn’t let these “best practices” jail you into a way of thinking that is not yours, actually my first tip in

this book is do not follow this book. Yet.
Do it wrong.

Learn why these best practices exist by experience, make code so convoluted that you cannot maintain it anymore,

don’t check for overflows in your numbers, allow yourself to do it wrong.

Your toolbox is there to aid you, your tools don’t have feelings that can be hurt (although they will grumble at you
many times) in the same way that you cannot hurt a hammer when missing the nail head. You cannot break a
computer by getting things wrong (at least 99.9999% of the time). Breaking the rules will just help you understand

them better.
Write your own code, keep it as simple as you can, and practice.

Don’t let people around you tell you that “you shouldn’t do it that way”, if you allow that to happen you're depriving
yourself of a great opportunity to learn. Don’t let others’ “lion tamer syndrome” get to you, avoid complex structures

as much as possible; cutting and pasting code will get you nowhere.
But most of all, never give up and try to keep it fun.

There will be times where you feel like giving up, because something doesn’'t work exactly as you want it to, or
because you feel you're not ready to put out some code. When you don’t feel ready, just try making something
simple, something that will teach you how to manipulate data structures and that gives you a result in just a couple
days of work. Just having a rectangle moving on the screen, reacting to your key presses can be that small confidence

boost that can get you farther and farther into this world.

And when all else fails, take a pen, some paper and your favorite Rubber Duck (make sure it is impact-proof) and

think.
Coding is hard, but at the same time, it can give you lots of satisfaction.

| really hope that this book will give you tips, tricks and structures that one day will make you say “Oh yeah, | can
use that!”. So that one day you are able to craft an experience that someone else will enjoy, while you enjoy the

journey that brings to such experience.

1 FOREWORD 1

https://en.wikipedia.org/wiki/Rubber_duck_debugging

2D Game Development: From Zero To Hero

2 Introduction

A journey of a thousand miles begins with a single step

Laozi - Tao Te Ching

Welcome to the book! This book aims to be an organized collection of the community’s knowledge on game devel-

opment techniques, algorithms and experience with the objective of being as comprehensive as possible.

2.1 Why another game development book?

It's really common in today’s game development scene to approach game development through tools that abstract
and guide our efforts, without exposing us to the nitty-gritty details of how things work on low-level and speeding
up and easing our development process. This approach is great when things work well, but it can be seriously
detrimental when we are facing against issues: we are tied to what the library/framework creators decided was the

best (read “applicable in the widest range of problems”) approach to solving a problem.

Games normally run at 30fps, more modern games run at 60fps, some even more, leaving us with between 33ms

to 16ms or less to process a frame, which includes:

¢ Process the user input;

* Update the player movement according to the input;
* Update the state of any Al that is used in the level;

* Move the NPCs according to their Al;

* |dentify Collisions between all game objects;

* React to said Collisions;

¢ Update the Camera (if present);

¢ Update the HUD (if present);

* Draw the scene to the screen.
These are only some basic things that can be subject to change in a game, every single frame.

When things don’t go well, the game lags, slows down or even locks up. In that case we will be forced to take the
matter in our hands and get dirty handling things exactly as we want them (instead of trying to solve a generic

problem).

When you are coding a game for any device that doesn’t really have “infinite memory”, like a mobile phone, consoles

or older computers, this “technical low-level know-how"” becomes all the more important.

This book wants to open the box that contains everything related to 2D game development, plus some small tips
and tricks to make your game more enjoyable. This way, if your game encounters some issues, you won't fear diving

into low-level details and fix it yourself.

Or why not, make everything from scratch using some pure-multimedia interfaces (like SDL or SFML) instead of fully

fledged game engines (like Unity).

2 INTRODUCTION 2

2D Game Development: From Zero To Hero

This book aims to be a free (as in price) teaching and reference resource for anyone who wants to learn 2D game

development, including the nitty-gritty details.

Enjoy!

2.2 Conventions used in this book
2.2.1 Logic Conventions

When talking about logic theory, the variables will be represented with a single uppercase letter, written in math

mode: A

The following symbol will be used to represent a logical “AND": A

The following symbol will be used to represent a logical “OR”: V

The logical negation of a variable will be represented with a straight line on top of the variable, so the negation of
the variable A will be A

2.2.2 Code Listings

Listings, algorithms and anything that is code will be shown in monotype fonts, using syntax highlighting where

possible, inside of a dedicated frame:

Listing 1: Example code listing

1 function Example(string phrase){
2 print(phrase);

3}

4

s class ExampleClassf{

6 // This is a simple example class

7 constructor (){

8 // This is an example constructor
9 3

0 }

2.2.3 Block Quotes

There will be times when it's needed to write down something from another source verbatim, for that we will use

block quotes, which are styled as follows:

Hi, I'm a block quote! You will see me when something is... quoted!

| am another row of the block quote! Have a nice day!

2.2.4 Boxes

In your journey through this book, you may find some boxes, let’s see which ones you may come across.

2 INTRODUCTION 3

2D Game Development: From Zero To Hero

‘ This is a tip box, here you will find tips that are loosely related to the chapter at hand.
ﬁ These small tips will help you make a better game, or wiggle your way through some-

thing difficult.

7

Pitfall Warning!

, shortcomings of a certain solution.

[) This is a pitfall box, it will warn you of traps behind the corner, as well as possible

7

Random Trivia!

This is a trivia box, it will give out some small facts that can help you understand things

better, or just give you a small break from all the learning.

/8

’

This is just a note box, it’s not a pitfall, a tip or a trivia. This is used for reminders and

just as a general purpose note

=

-~

Advanced Wizardry!

This will warn you of complex sections, or sections treating advanced topics that have

limited game development usefulness. Such sections may be skimmed over.

e

~

2.2.5 Engine Used

Most editions of this book does not use any engine. All algorithms will be presented pretending there is some
“generic engine” behind the scenes that handles sprites, vectors and the like. The objective of this book is teaching
algorithms, tips and tricks and game design in the most engine-agnostic (and language-agnostic, if you're looking

at the “pseudocode edition”) way possible.

If instead you're reading a version that features “language extensions”, all algorithms will be in your favourite

language, using your favourite engine.

2.2.6 About editions

This book comes in various editions, and they come with some caveats.

2 INTRODUCTION

S

2D Game Development: From Zero To Hero

Pseudocode Edition: This is the standard edition, using a C-like syntax that tries to be as readable as
possible and abstracts itself from any kind of engine.

Python Edition: Python is considered one of the easiest language to start coding on. Many tend to complain
about its performance, but its similarity to Godot Engine’s GDScript and its flexibility make it a good candidate
for starters.

C++ Edition: C++ is probably the most used language in game development (along with C#) but it can be
really difficult to manage. It has no garbage collection, forcing you to manage the memory manually, and
pointers can prove to be a difficult concept for many.

JavaScript Edition: Javascript is the de-facto “internet language” and its influence is spreading to desktop
applications and video games too. Many games now can be played on the browser thanks to it and the HTML5
canvas elements. This is a language that can be very forgiving and frustrating at the same time.

Lua Edition: Lua is one of the most spread scripting languages in the world of video games. Since it has a very
small interpreter, it can be added to a lot of code bases without weighing them down much. It is not a proper
object-oriented language, but it has very strong metaprogramming capabilities (where you can “program the
programming language”). There are also some libraries that allow for classes and object-oriented concepts

to fitin Lua.

2.3 Structure of this Book

This book is structured in many chapters, here you will find a small description of each and every one of them.

Foreword: You didn’t skip it, right?

Introduction: Here we present the structure of the book and the reasons why it came to exist. You are
reading it now, hold tight, you're almost there!

The Maths Behind Game Development: Here we will learn the basic maths that are behind any game, like
vectors, matrices and screen coordinates.

Some Computer Science Fundamentals: Here we will learn (or revise) some known computer science
fundamentals (and some less-known too!) and rules that will help us managing the development of our game.
A game design dictionary: Here we will introduce some basic concepts that will help us in understanding
game design: platforms, input devices and genres.

Project Management Basics and Tips: Project management is hard! Here we will take a look at some
common pitfalls and tips that will help us deliver our own project and deliver it in time.

Writing a Game Design Document: In this section we will take a look at one of the first documents that
comes to exist when we want to make a game, and how to write one,

The Game Loop: Here we will learn the basics of the “game loop”, the very base of any video game.
Collision Detection and Reaction: In this section we will talk about one of the most complex and compu-
tationally expensive operations in a video game: collision detection.

Scene Trees: Here we will briefly talk about probably the most important structure in games and game
engines: the scene tree.

Cameras: In this section we will talk about the different types of cameras you can implement in a 2D game,

with in-depth analysis and explanation.

2

INTRODUCTION 5

2D Game Development: From Zero To Hero

Game Design Tips: In this chapter we will talk about level design and how to walk your player through the
learning and reinforcement of game mechanics, dipping our toes into the huge topic that is game design.
Creating your own assets: Small or solo game developers may need to create their own assets, in this
section we will take a look at how to create our own graphics, sounds and music.

Design Patterns: A head-first dive into the software engineering side of game development, in this section
we will check many software design patterns used in many games.

Useful Containers and Classes: A series of useful classes and containers used to make your game more
maintainable and better performing.

Artificial Intelligence in Video games: In this section we will talk about algorithms that will help you coding
your enemy Al, as well as anything that must have a “semblance of intelligence” in your video game.

Other Useful Algorithms: In this section we will see some algorithms that are commonly used in game,
including path finding, world generation and more.

Procedural Content Generation: In this chapters we will see the difference between procedural and random
content generation and how procedural generation can apply to more things than we think.

Developing Game Mechanics: Here we will dive into the game development’s darkest and dirtiest secrets,
how games fool us into strong emotions but also how some of the most used mechanics are implemented.
Balancing Your Game: A very idealistic vision on game balance, in this chapter we will take a look inside
the player’'s mind and look at how something that may seem “a nice challenge” to us can translate into a
“terrible balance issue” to our players.

Accessibility in video games: Here we will learn the concept of “accessibility” and see what options we
can give to our players to make our game more accessible (as well as more enjoyable to use).

Testing your game: This section is all about hunting bugs, without a can of bug spray. A deep dive into the
world of testing, both automated and manual.

Profiling and Optimization: When things don't go right, like the game is stuttering or too slow, we have to
rely on profiling and optimization. In this section we will learn tips and tricks and procedures to see how to
make our games perform better.

Marketing Your Game: Here we will take a look at mistakes the industry has done when marketing and
maintaining their own products, from the point of view of a small indie developer. We will also check some of
the more controversial topics like loot boxes, micro transactions and season passes.

Keeping your players engaged: a lot of a game’s power comes from its community, in this section we will
take a look at some suggestion you can implement in your game (and out-of-game too) to further engage your
loyal fans.

Dissecting Games: A small section dedicated to dissecting the characteristics of one (very) bad game, and
two (very) good games, to give us more perspective on what makes a good game “good” and what instead
makes a bad one.

Project Ideas: In this section we take a look at some projects you can try and make by yourself, each project
is divided into 3 levels and each level will list the skills you need to master in order to be able to take on such
level.

Game Jams: A small section dedicated on Game Jams and how to participate to one without losing your mind

in the process, and still deliver a prototype.

2

INTRODUCTION 6

2D Game Development: From Zero To Hero

* Where to go from here: We're at the home stretch, you learned a lot so far, here you will find pointers to
other resources that may be useful to learn even more.

* Glossary: Any world that has a 4 symbol will find a definition here.

* Engines and Frameworks: A collection of frameworks and engines you can choose from to begin your game
development.

* Tools: Some software and tool kits you can use to create your own resources, maps and overall make your
development process easier and more manageable.

* Premade Assets and resources: In this appendix we will find links to many websites and resource for
graphics, sounds, music or learning.

* Contributors: Last but not least, the names of the people who contributed in making this book.

Have a nice stay and let’s go!

2 INTRODUCTION 7

Part 1: The basics

2D Game Development: From Zero To Hero

3 The Maths Behind Game Development

Do not worry about your difficulties in Mathematics. | can assure you mine

are still greater.

Albert Einstein

This book assumes you already have some knowledge of maths, but we will also try to keep the bar of entry as low

as possible.

Also we will represent derivatives with the f’(z) symbol, instead of the more verbose %.

In this chapter we’ll take a quick look (or if you already know them, a refresher) on the basic maths needed to make

a 2D game.

3.1 Some useful symbols

While reading this book, we may need to delve into some mathematical lingo that not everyone may understand

immediately, so here’'s a small glossary of some of mathematical the symbols we may use.

« x € S Denotes a “set membership”, so the object to the left of the symbol is an element of the set at the
right: x is an element inside the set S;

+ A C B Denotes a “subset relationship”: A is a subset of B;

« A C B Denotes a “subset relationship” where equality is possible: A is a subset of B, but also it may happen
that A equals B;

« A U B Denotes “set union”, the result is composed by all elements of A and B, combined;

« AN B Denotes “set intersection”, the result is composed by all elements of A that are also found in B;

« V Means “for all”;

» J Means “exists”;

« 3! Means “exists only one”;

e P — () Means “implies”, so you can read this as “P implies Q" or “if P is true then Q is true”;

« P < (@ Logical equivalence: means “if and only if” or “is equivalent”, so you can read this as “P is equivalent

to Q” or “P if and only if Q";

3.2 The modulo operator

Very basic, but sometimes overlooked, function in mathematics is the “modulo” function (or “modulo operator”).
Modulo is a function that takes 2 arguments, let’'s call them “a” and “b”, and returns the remainder of the division

represented by a/b.
So we have examples like mod(3,2) = 1 or mod(4, 5) = 4 and mod(8,4) = 0.

In most programming languages the modulo function is hidden behind the operator “%”, which means that the

function mod(3, 2) is represented with 3%2.

The modulo operator is very useful when we need to loop an ever-growing value between two values (as will be

3 THE MATHS BEHIND GAME DEVELOPMENT 9

2D Game Development: From Zero To Hero

shown in infinitely scrolling backgrounds).

Pitfall Warning!

® Be careful when using the modulo operator with negative arguments: it may lead to

’ unexpected results, which may depend on the programming language you are using.

3.3 Powers and Roots

We start our revision of maths by remembering powers and roots. A power is just a short way to multiply a number

by itself a certain amount of times.
For example: 23 = 2.2-2 = 8, 2 is multiplied by itself 3 times, giving 8 as a result.
Some other examples can be 4* =4-4.4.-4=256and 032 =0-0-...-0=0

One rule that we need to remember is that any number, when elevated to the zero-th power is always 1, so 256° = 1

as well as 29 = 1.

Technically 00 might be considered “undefined”, but in most non-rigorous mathemati-

cal environments 0° = 1 is accepted.

\

Roots are the inverse operation of powers, which means that if 42 = 16 then v/16 = 4

So we can say that
I The nth root of a number x is a number r so that " = x

Taking the examples of earlier, we have that ¥/8 = 2, v/256 = 4 and **3/0 = 0. Omitting the index n on the root

is a short way to write the “square root”, which is the root with index 2. That means:

Vi=Vi=2

Pitfall Warning!

When talking “real numbers”, there is no \/jl: that would fall into the “complex num-
‘ ‘ ‘ bers” category, which are a matter outside the scope of this revision. That’'s because
,. there is no real number that multiplied by itself an even amount of times that would
give a negative number. To make things more complex, roots with odd indices of nega-

tive numbers are part of the real numbers instead: {/—8 = —2 because (—2)3 = —8

3 THE MATHS BEHIND GAME DEVELOPMENT 10

2D Game Development: From Zero To Hero

3.4 Equations

Equations are a way to express equality between two expressions, we’ve seen equations all our lives, just “hidden”.

Every operation is an equation.

In their more known form, equations can have one or more “unknowns”, usually represented with letters (the most
used are, in order x, y and z) and “solving an equation” means finding values for the unknowns that make the

equation true.

Here's a simple equation:

2-x=10

Which can be read as “x is the number, that multiplied by 2, gives 10", the solution of this equation is x = 5, because

2.5 =10.

There are some basic rules, here’s a quick rundown.

3.4.1 You can add or subtract any number on both sides

This is one of the rules that will help us making things a bit easier. Let’s take the following example:

15+ 2z =45

We can subtract 15 on both sides to make our life easier:

—15+1564+2x=45—-15

2x = 30

3.4.2 You can multiple or divide any non-zero number on both sides

This is another one of those rules that makes things a lot easier, taking the previous example:

2x = 30

We can divide each side by 2 (or multiply it by %) to get to the final result:

—-2x=30-
20 _ 30
2 7 2

3 THE MATHS BEHIND GAME DEVELOPMENT 11

2D Game Development: From Zero To Hero

3.5 Exponentiations and Logarithms

Similarly to powers involving simple numbers, we can involve letters in powers too, making them “exponentiations”.

2% =32

In this case x is the number that makes the previous equation true (by the way, the result is x = 5).

Its inverse is called a “logarithm”, and it's represented as follows:

log, 32 =2

In the previous example “2” is called the “base” of the logarithm. So this formula is read as “x is the base 2 logarithm

of 32" (the result is still 5, by the way).

Here is a quick table of rules that can be used to make logarithms easier to calculate.

Table 1: Some rules that would help us calculating logarithms

Rule Formula
Product logy (z - y) = log, = + log, v
Quotient log, (§) = log, z —log, y
Power logy (zP) = p - log, x
Root log, (¥/z) = lw%

3.6 Limits

Advanced Wizardry!

We're entering some complex math territory here, so | will give you an “intuitive” defi-

nition of a limit. Having an idea of what it is will suffice for the needs of this book

Limits are an interesting beast: we can see them as the value a function approaches as the input approaches some

value. Limits are written as follows:

lim f(z) =y

r—a

3 THE MATHS BEHIND GAME DEVELOPMENT 12

2D Game Development: From Zero To Hero

In this case it can be read as “y is the limit, for x approaching a, of f(x) Limits can be seen as, “the more x gets

closer to a, the more f(x) gets closer to y”.

y and a can be any value, including infinity. In fact the following statement is true:

lim =4
r——+00

The further we count down the line of numbers the closer we get to infinity. Which also means that:

) 1
lim — =0
r——+o00 I

Because as we are counting up with x, we are dividing 1 by bigger and bigger numbers until (at the limit) we reach

0.

Pitfall Warning!

® There are some situations where a limit cannot be determined immediately (or some-
’ times at all). Some of these are +00 — 00, 0+ 00, 22, %, oo, 0% and 1°°.

3.7 Derivatives

This is not a complete guide to derivatives, there is so much more to it than written
in here. This is mostly for informational purposes when the term “derivative” will be

used in this book.

Derivatives are technically just a limit, to be precise they are the following limit:

i L@+ B = f(h)
h—0 h

They also have a nifty property that is used extensively in calculus: if f(x) > 0 then f(x) is increasing, while if
f'(z) < Othen f(z) is decreasing. This means that the equation f’(z) = 0 can be used to find local extrema: also

known as “local minimums” and “local maximums”.

There are some rules to quickly derivative functions, here we list some of the most basic.

3 THE MATHS BEHIND GAME DEVELOPMENT 13

2D Game Development: From Zero To Hero

Table 2: Some simple derivation rules (k is any constant number and e is Euler’'s number)

Function Derivative
k 0
l‘k k. l‘k_ 1
e’ e’

Then there are rules for sums, multiplications and divisions.

Table 3: Some derivation rules for combined functions (a and b are constants)

Functions Derivative
af(z) + bg(x) af'(z) + bg'(x)
f(x)g(x) f'(@)g(x) + f(x)g'(x)
f(x) f'(z)g(z)~f(z)g' ()
g(z) (9(2))?
flg(@)) f'lg(@)) - g'(2)

3.8 The Cartesian Plane

The Cartesian plane is a plane that features a 2-dimensional coordinate system. This way we can represent points

with a pair of coordinates (z, y).

Figure 1: Example of a Cartesian plane

3 THE MATHS BEHIND GAME DEVELOPMENT 14

2D Game Development: From Zero To Hero

Using a Cartesian plane we can represent the position of items, as well as their shape, space occupation, as well as

vectors that represent forces, velocity and direction.
It is an essential tool for 2D game development, and it will be one of the abstractions we will use to represent items

in a 2-Dimensional plane.

3.9 Vectors

For our objective, we will simplify the complex matter that is vectors as much as possible.

In the case of 2D game development, a vector is just a pair of values (x,y).

Vectors usually represent a force applied to a body, its velocity or acceleration and are graphically represented with

an arrow.

On a Cartesian plane it can be seen as “the x and y quantities you need to move to get from a point to another”.

Figure 2: Image of a vector

From the previous example, the vector v = (4, 1) can be thought of as the following:

I you need to move 4 units on the x axis and 1 on the y axis to go from the origin to the point P(4, 1)

The pain of learning about vectors is paid off by their capacity of being added and subtracted among themselves,

as well as being multiplied by a number (called a “scalar”) and between themselves.

3.9.1 Adding and Subtracting Vectors

Adding vectors is as easy as adding its “members”. Let’'s consider the following vectors:
v=(4,1)

u=(1,4)

The sum vector s will then be:

s=v+u=(4+1,1+4)=(55)

3 THE MATHS BEHIND GAME DEVELOPMENT 15

2D Game Development: From Zero To Hero

Graphically it can be represented by placing the tail of the arrow v on the head of the arrow u, or vice-versa:

Figure 3: Graphical representation of a sum of vectors

A different example could be the following:
v=1(2,4)

u=(1,5)

The sum vector s will be:

s=u+v=(24+1,4+5)=(3,9)

3.9.2 Scaling Vectors

There may be situations where you need to make a vector x times longer. This operation is called “scalar multipli-

cation” and it is performed as follows:
v={(1,2)

3.v=(1-3,2-3)=(3,6)

Figure 4: Example of a vector multiplied by a value of 3

Obviously this works with scalars with values between 0 and 1:

3 THE MATHS BEHIND GAME DEVELOPMENT 16

2D Game Development: From Zero To Hero

v=(4,2)
bu=(4d-2) = 2

Figure 5: Example of a vector multiplied by a value of 0.5

When you multiply the vector by a value less than 0, the vector will rotate by 180°.

v=1(1,2)

2. v=(-2-1,-2-2) = (-2,-4)

Figure 6: Example of a vector multiplied by a value of -2

3.9.3 Dot Product

The dot product (or scalar product, projection product or inner product) is defined as follows:

Given two n-dimensional vectors v = [v1, Vg, ..U,] and u = [ug, ug, ...

n

v~u:Z(vioui):(v1~u1)+...+(vn~un)

i=1

So in our case, we can easily calculate the dot product of two two-dimensional vectors v = [vl, ’02] andu = [ul, 'UQ]

as:

3 THE MATHS BEHIND GAME DEVELOPMENT

,un] the dot product is defined as:

2D Game Development: From Zero To Hero

vou=(vy-uy)+ (ve - u2)

Let’s make an example:

Given the vectors v = [1,2] and u = [4, 3], the dot vector is:

vou=(1-4)+(2-3)=4+6=10

3.9.4 Vector Length and Normalization

Given a vectora = [al, az, ..., an], you can define the length of the vector as:

llall = /a3 +a3 + ... + a2

Or alternatively

lal| = Va-a

We can get a 1-unit long vector by “normalizing” it, getting a vector that is useful to affect (or indicate) direction
without affecting magnitude. A normalized vector is usually indicated with a “hat”, so the normalized vector of

a = la1,az,...,ay) is

. a
4=+
lal|
Knowing that the length of a vector is a scalar (a number, not a vector), normal scalar multiplication rules apply.

(See Scaling Vectors)

3.9.5 “Clamping” a Vector

This is not an operation “per se”, but there are occasions where we need to limit the length of a vector: this usually
happens when we are working with velocity, as not limiting it would allow an object to change position faster and

faster, making the game less playable and even breaking time-stepping collision detection algorithms.

To clamp a vector, we need to find its magnitude and direction first, which is the “normalized vector”. Let’s think

about the vector v, its magnitude and direction are:

[loll = Vv-v

. v
0= —
]|

3 THE MATHS BEHIND GAME DEVELOPMENT 18

2D Game Development: From Zero To Hero

After that, we can build a new vector using the “clamped magnitude” (which we’ll call ||v||ciamp), calculated as such:

[v]] when |[o]| < |[v][maz
||U||clamp =
[|0]|maz otherwise

To build the new vector, we just need to multiply ||v||ciqmyp by ©:

Vclamp = HU”clamp - v
The new vector will have the same direction as the old one, but its magnitude will be clamped, just like we wanted.

3.10 Geometry

Among all the maths we found so far (and the maths we will explain later), we cannot avoid talking a bit about
geometry: in this book we will talk about the minimal amount of geometry necessary to understand the underlying
concepts of what’s coming up.

3.10.1 Convex vs Concave polygons

A polygon is considered convex essentially when any line (not tangent to an edge or corner) drawn through the

shape crosses the shape itself only twice (at its ends).

C B

E F

Figure 7: Example of a convex shape

Any shape where you can find at least one line that crosses the shape more than twice is considered “non-convex”

(commonly referred as “concave”).

3 THE MATHS BEHIND GAME DEVELOPMENT 19

2D Game Development: From Zero To Hero

E

Figure 8: Example of a concave shape

Not all non-convex shapes are technically called “concave” (they should be called “non-
convex”), but for the sake of simplicity we’ll use the term “non-convex” and “concave”

interchangeably in this book.

3.10.2 Self-intersecting polygons

Contrary to what many think, polygons can self-intersect too, which can make calculations a lot harder.

C
A

B
D

Figure 9: Example of a self-intersecting polygon

For the sake of game development, we will usually talk about simple polygons which are polygons that don’t self-
intersect and have no holes in them. More strictly we will (for 99.9% of the time) talk about convex simple poly-

gons.

3.10.3 Straight Lines and their equations

One of the main topics we will encounter over and over in our game development adventure will be “straight lines”.
We will need to draw them, see if two straight lines collide, project stuff onto them, and much more. So it's important

that we know them well.

3 THE MATHS BEHIND GAME DEVELOPMENT 20

2D Game Development: From Zero To Hero

Here's a straight line:

ar+by+c=0
That's not what you expected, right? What you’ve seen is the “general form” of a straight line’'s equation, because

you can represent lines using equations (also circles, and other stuff). This is not a much-used form, though, probably

the most used form is called the “slope-intercept form”:

y=mz+q

Random Trivia!

To transform a “general form” equation into the relative “slope-intercept from” just

remember the following formulas:

This doesn’t work well when b = 0, which will be subject of the next “pitfall”.

Where in this case m is the slope of our straight line, and g represents the so-called y-intercept (the value of y when

x = 0). If ¢ = 0 the line goes through the origin of the Cartesian coordinate system, if m = 0 the line is horizontal.

Pitfall Warning!

‘ ‘ ‘ “Vertical straight lines” is where the slope-intercept form fails, in fact vertical straight

?

lines have an equation in the form of = k, which would mean that b = 0 which is

problematic (see previous trivia).

3.10.3.1 Getting the equation of a straight line, given two points

We all know that given two points we can strike one and only one line. How many times did you measure two points

(maybe while doing some D.L.Y.) and stroke a line between them?

It will be useful in our adventure to be able to get the equation of a straight line starting from two points, so let’s call

our two points P(x1,y1) and Q(x2, y2), then the straight line that crosses both those points will have equation:

Y-y _y2—-un
r — T To — T

This may seem really complicated, but with some small calculations we can reach a formula for our straight line in

any form (generic or “slope-intercept”).

3 THE MATHS BEHIND GAME DEVELOPMENT 21

2D Game Development: From Zero To Hero

Pitfall Warning!

‘ ‘ ‘ Again, this formula fails when we are dealing with “vertical lines”, because the denom-
a. inator at the right side of the equation will be zero. But in that case we’ll already know

the formula: it will be x = x; (which in turn will be equal to)

3.10.3.2 Getting the equation, given the slope and a point

If we have a point P(xp, yp) and the slope m (for instance if we need to find a line perpendicular to another line),

in that case we can use the following formula:

Y —yp =m(x —xp)

Pitfall Warning!

‘ ‘ ‘ Guess what? This (again) doesn’t allow us to create “vertical lines”, because we need
’. a slope value, which we don’t have when it comes to vertical lines. You can see (non

rigorously) a vertical line as a line with “infinite slope”.

3.10.4 Projections

In some situations (as you will see in the SAT), we may need to get to project polygons onto a line, this usually

involves projecting points to a line.

Given the formulas we’ve seen earlier, and doing some thinking, we can easily project a point onto any straight line.

Let’s see how to do it.
First of all, the line we will be projecting onto will have equation y = mx + ¢, just as in the slope-intercept formula.

We will assume that we have a point P(xp, yp) that we want to project onto a line r with equation y = mx + g,

with m # 0 (thus excluding horizontal lines). We will call the projected point “P onto r” with the name Pr(xr, yT).

3 THE MATHS BEHIND GAME DEVELOPMENT 22

2D Game Development: From Zero To Hero

r

Figure 10: Projecting the point P onto the liner

First, we need to find the line that goes through P and is perpendicular to 7, this is really easy. To find a slope my

of a line perpendicular to another line with slope m we use the formula

Pitfall Warning!

’ In this case we can easily conclude that if m = 0, the projection of the point P onto

This is why we excluded the case m = 0 (horizontal lines), if we didn’t we would have

® the chance of having m; = % which doesn’t make sense.

the line 7 has coordinates (mp, y) (with y taken from the line we’re projecting onto).

Now we have a point and a slope, so we can use one of the formulas we’ve already seen to find the line with that

slope that crosses P:

1
y=yp=mu(z—ap) Sy —yp = ——(x 1)

To find P, we just need to find the point where the two lines collide, which is the solution to the equation system:

Which finds solution in:

3 THE MATHS BEHIND GAME DEVELOPMENT 23

2D Game Development: From Zero To Hero

ZTptmy,—mgq

T = m2+1
_ mzptm’y,+q
y - m2+1

The coordinates x and y we just found are actually the coordinates x,- and ¥,- of our projected point P;.

Pitfall Warning!

‘ ‘ ‘ Due to the fact that we used m = f% the previous results are not valid for m = 0.
,. The denominator of the results gives no issue, since m? +1 = 0 does not have a solu-
tion in real numbers (and we won’t need to delve into the Complex number territory).

3.10.4.1 Projecting arbitrary lines on the axes

Similarly to what we’ve done with points, we can project arbitrary lines (or, to be precise, the ends of such lines)

onto the axes. This will help us in doing some calculations later (when we’ll talk about SAT).

To project any line r to the x-axis we can just “pass all the line’s points through” the following function:

pT'sz(Pr(l',y)) = (xvo)

for each point P, in the line r.

If we want to project such line on the y-axis, we can just use this other function:

p?"ij(Pr(Jf, Z/)) = (O’ y)

for each point P, in the line 7.

We can see an intuitive representation of projecting a line onto the axes below:

3 THE MATHS BEHIND GAME DEVELOPMENT 24

2D Game Development: From Zero To Hero

Figure 11: Projecting a line onto the axes

3.10.4.1.1 How does it work?

Let’s take the point P(2, 5) from the previous figure. We want to project it on the x axis: that means we need to

find a line that is 90 degrees with the x axis and passes through P.

Such line is the line with equation & = 2, now to find the projection of P onto the x axis, we will just need to solve a

simple equation system.

Where y = 0 is the equation of the x axis. So our projected point is P, (2,0).

Similar thing goes for projecting the point on the y axis: the line that is 90 degrees with the y axis and goes through

P has equation y = 5, the y axis has equation z = 0, thus the system of equation is solved with Py(O, 5).

3.11 Matrices
3.11.1 What is a matrix
Matrices are essentially an m X n array of numbers, which are used to represent linear transformations.

Here is an example of a 2 X 3 matrix.

3 THE MATHS BEHIND GAME DEVELOPMENT 25

2D Game Development: From Zero To Hero

3.11.2 Matrix sum and subtraction

Summing and subtracting m X n matrices is done by summing or subtracting each element, here is a simple example.

Given the following matrices:

1 4 1 3 0
Ay g = By 3 =
3 2 0 4 2 4
We have that:
2 1 4 1 3 0 24+1 143 440 3 4 4
Az 3+ Bog = + = =
3 2 0 4 2 4 3+4 242 0+14 7 4 4

3.11.3 Multiplication by a scalar

Multiplication by a scalar works in a similar fashion to vectors, given the matrix:

Multiplication by a scalar is performed by multiplying each member of the matrix by the scalar, like the following

example:

2 1 4 3.2 3.1 3.4 6 3 12
3-Ay3=3- - —
320 3.3 3.2 3.0 9 6 0

3.11.4 Transposition

Given an m X n matrix A, its transposition is an n X m matrix AT constructed by turning rows into columns and

columns into rows.

Given the matrix:

2 1 4
Az =
3 2 0
The transpose matrix is:
2 3
A{g =11 2
4 0

3 THE MATHS BEHIND GAME DEVELOPMENT 26

2D Game Development: From Zero To Hero

3.11.5 Multiplication between matrices

Given 2 matrices with sizes m X n and n X p (mind how the number of rows of the first matrix is the same of the

number of columns of the second matrix):

2 3
2 3 4
Aso= |1 2| Bas=
01 0
4 0

We can calculate the multiplication between these two matrices, in the following way.

First of all let’s get the size of the resulting matrix, which will be always m X p.

Now we have the following situation:

2 3 7?77
2 3 4

1 2| X =7 77
0 1 0

4 0 777

Matrix multiplication is called a “rows by columns” multiplication, so to calculate the first row - first column value

we'll need the first row of one matrix and the first column of the other.

2 3 77
2 3 4

1 2| X =17 77
0 1 0

4 0 777

The values in the example will be combined as follows:

2-243-0=4
Obtaining the following:
2 3 4 7 7
2 3 4
1 2] X =17 7 7
01 0
4 0 7?77

Let’s try the next value:

3 THE MATHS BEHIND GAME DEVELOPMENT 27

2D Game Development: From Zero To Hero

2 3 4 77
2 3 4

1 2| x =17 72 2
0 1 0

4 0 ?2 7 9

The values will be combined as follows:

2:3+3-1=9
Obtaining:
2 3 4 9 7
2 3 4
1 2| X =7 7 7
01 0
4 0 T 77

Same goes for the last value, when we are done with the first row, we keep going similarly with the second row:

2 3 4 9 8
2 3 4

1 2] X =17 7 7
010

4 0 777

Which leads to the following calculation:

1-242-0=2
Which we will insert in the result matrix:
2 3 4 9 8
2 3 4
1 2| X =12 7?7 ?
0 1 0
4 0 ? 0?7 9

2 3 4 9 8
2 3 4

1 2] X =12 5 4
010

4 0 8 12 16

3 THE MATHS BEHIND GAME DEVELOPMENT

28

2D Game Development: From Zero To Hero

Multiplication between matrices is non commutative, which means that the result of
A x B is not equal to the result of B x A: actually one of the results may not even

be possible to calculate.

3.11.6 Other uses for matrices

Matrices can be used to quickly represent equation systems, with equation that depend on each other. For instance:

T
2 3 6 4
y =
1 4 9)
z

Can be used to represent the following system of equations:
2r+3y+62=4
lr4+4y+92=5

Or, as we'll see, matrices can be used to represent transformations in the world of game development.

3.12 Trigonometry

When you want to develop a game, you will probably find yourself needing to rotate items relative to a certain point

or relative to each other. To do so, you need to know a bit of trigonometry, so here we go!

3.12.1 Radians vs Degrees

In everyday life, angles are measured in degrees, from 0 to 360 degrees. In some situations in maths, it is more

comfortable to measure angles using radians, from 0 to 2.
You can convert back and forth between radians and degrees with the following formulas:
angle in degrees = angle in radians - —
s

angle in radians = angle in degrees - 180

This book will always refer to angles in radians, so here are some useful conversions, ready for use:

3 THE MATHS BEHIND GAME DEVELOPMENT 29

2D Game Development: From Zero To Hero

Table 4: Conversion between degrees and Radians

Degrees Radians

0° 0
30° z
45° z
60° z
90° z
180° ™
360° 2

3.12.2 Sine, Cosine and Tangent

The most important trigonometric functions are sine and cosine. They are usually defined in reference to a “unit

circle” (a circle with radius 1).

Given the unit circle, let a line through the origin with an angle 6 with the positive side of the x-axis intersect such
unit circle. The x coordinate of the intersection point is defined by the measure 005(0), while the y coordinate is

defined by the measure sin ().

Figure 12: Unit Circle definition of sine and cosine

For the purposes of this book, we will just avoid the complete definition of the tangent function, and just leave it as

a formula of sine and cosine:

tan(6) =

3 THE MATHS BEHIND GAME DEVELOPMENT 30

2D Game Development: From Zero To Hero

3.12.3 Pythagorean Trigonometric Identity

One of the most important identities in Trigonometry is the “Pythagorean Trigonometric Identity”, which is expressed

as follows, valid for each angle 0:

sin*(0) + cos*(0) = 1

Using this identity, you can express functions in different ways:

cos?(0) = 1 — sin?(0)

sin*(0) = 1 — cos?(0)

Also remember that sin?(0) = (sin(0))? and cos?(0) = (cos(#))?.

3.12.4 Reflections

Sometimes we may need to reflect an angle to express it in an easier way, and their trigonometric formulas will be

affected, so the following formulas may come of use:

Table 5: Some reflection formulas for trigonometry

Reflection Formulas

cos(—0) = cos(6)
sin(Z —0) = cos(0
cos(§ — 0

cos(m — 6) = —cos(0)
sin(2m — 0) = —sin(0) = sin(—0)
cos(2m — 0) = cos(0) = cos(—0)

3.12.5 Shifts

Trigonometric functions are periodic, so you may have an easier time calculating them when their arguments are

shifted by a certain amount. Here we can see some of the shift formulas:

3 THE MATHS BEHIND GAME DEVELOPMENT 31

2D Game Development: From Zero To Hero

Table 6: Some Shift Formulas for Trigonometry

Shift Formulas

sin(0 £ 3) = Fcos(0)
cos(0 = §) = Fsin(0)
sin(0 +) = —sin(6)
cos(0 + m) = —cos(0)

sin(0 + k- 2m) = sin

>
~—

cos(0 + k- 2m) = cos

3.12.6 Trigonometric Addition and subtraction

Sometimes you may need to express a trigonometric formula with a complex argument by splitting such argument
into different trigonometric formulas. If such argument is a sum or subtraction of angles, you can use the following

formulas:

Table 7: Some addition and difference identities in trigonometry

Addition/Difference Identities

sin(a £ B) = sin(a)cos(f) + cos(a)sin(S)
cos(a £ B) = cos(a)cos(B) F sin(a)sin(B)

3.12.7 Double-Angle Formulae

Other times (mostly on paper) you may have an argument that is a multiple of a known angle, in that case you can

use double-angle formulae to calculate them.

Table 8: Some double-angle formulae used in trigonometry

Double-Angle Formulae

sin(20) = 2sin(0)cos(0)
cos(20) = cos?(0) — sin?(9)

3.12.8 Inverse Formulas

As with practically all maths formulas, there are inverse formulas for sine and cosine, called arcsin and arccos,

which allow to find an angle, given its sine and cosine.

In this book we won’t specify more, besides what could be the most useful: the 2-argument arctangent.

3 THE MATHS BEHIND GAME DEVELOPMENT 32

2D Game Development: From Zero To Hero

This formula allows you to find the angle of a vector, relative to the coordinate system, given the x and y coordinates

of its “tip”, such angle 0 is defined as:

Y
0 = arctan(=
arc an(x)

(x,y)

Figure 13: Graphical plotting of the angle of a vector

3.13 Numerical Analysis

Here we will give some pointers over some algorithms and methods that may be useful to better explain some topics
treated in this book. Feel free to skip or quickly read this section if you don’t want to dive into too much detail over

this kind of maths.

3.13.1 Newton-Raphson method

Advanced Wizardry!

This section treats of how to approximate a function value in an iterative way. This will
be useful to know what the “Fast Inverse Square Root” algorithm uses. Feel free to

skim through this section.

Also known as Newton’s method, this is an iterative algorithm that is used to get progressively better approximations

to the roots of a function.

The algorithm starts with a “guess”, called x(, and produces the first approximation using the formula:

Each subsequent guess (and thus iteration) can be obtained similarly by using the formula:

3 THE MATHS BEHIND GAME DEVELOPMENT 33

2D Game Development: From Zero To Hero

fr I T)

And such guess will be more precise than the previous one (if we don’t consider some situations where approaching
the root can be problematic or not possible). The algorithm will stop when you reach an approximation that is “good

enough”.

Obviously all limitations of standard functions apply, such as domain and trouble with divisions by zero.

3.14 Coordinate Systems on computers

When it comes to 2D graphics on computers, our world gets quite literally turned upside down.

In our maths courses we learned about the Coordinate Plane, with an origin and an x axis going from left to right and

a y axis going from bottom to top, where said axis cross it’s called the “Origin”.

Figure 14: Image of a coordinate plane

When it comes to 2D graphics on computers and game development, the coordinate plane looks like this:

- -
X

YY

Figure 15: Image of a screen coordinate plane

The origin is placed on the top left of the screen (at coordinates (0,0)) and the y axis is going from top to bottom.

It’s a little weird at the beginning, but it's not hard to get used to it.

3 THE MATHS BEHIND GAME DEVELOPMENT 34

2D Game Development: From Zero To Hero

3.15 Transformation Matrices

There will be a time, in our game development journey where we need to rotate an object, and that’'s bound to be
pretty easy because rotation is something that practically all engines and tool kits do natively. But also there will be

times where we need to do transformations by hand.

An instance where it may happen is rotating an item relative to a certain point or another item: imagine a squadron

of war planes flying in formation, where all the planes will move (and thus rotate) relative to the “team leader”.
In this chapter we’ll talk about the 3 most used transformations:

» Stretching/Squeezing/Scaling;
* Rotation;

e Shearing.
And to do so, we will use the following reference image, complete with a quadrant of the Cartesian plane.

8

y

Figure 16: Reference image for transformation matrices

3.15.1 Stretching

Stretching is a transformation that enlarges all distances in a certain direction by a defined constant factor. In 2D

graphics you can stretch (or squeeze) along the x-axis, the y-axis or both.

If you want to stretch something along the x-axis by a factor of k, you will have the following system of equations:

which is translated in the following matrix form:

3 THE MATHS BEHIND GAME DEVELOPMENT 35

2D Game Development: From Zero To Hero

Likewise, you can stretch something along the y-axis by a factor of k by using the following matrices:

Figure 17: Stretching along the x and y axes

You can mix and match the factors and obtain different kinds of stretching, if the same factor k is used both on the

x and y-axis, we are performing a scaling operation, like follows:

' k 0f |z
Yy 0 k| |y

In instead of stretching you want to squeeze something by a factor of k, you just need to use the following matrices

for the x-axis:

x’ _ % 0| =

Y 0 1| |y
and respectively, the y-axis:

z’ 1 0| |z

Y 0 7| |v

3.15.2 Rotation

If you want to rotate an object by a certain angle 6, you need to decide upon two things (besides the angle of

rotation):

¢ Direction of rotation (clockwise or counterclockwise);

¢ The point of reference for the rotation.

3 THE MATHS BEHIND GAME DEVELOPMENT 36

2D Game Development: From Zero To Hero

3.15.2.1 Choosing the direction of the rotation
We will call T'’g the transformation matrix for the “rotation” functionality.

Similarly to stretching, rotating something of a certain angle 6 leads to the following matrix form:

If we want to rotate something clockwise, relative to its reference point, we will have the following transformation

matrix:

cos(0) sin(0)
—sin(f) cos(6)

T =

This could how our square could look, after a rotation:

8

y

7-

Figure 18: The result of applying a rotation matrix

If instead we want our rotation to be counterclockwise, we will instead use the following matrix:

cos(0) —sin(0)

Tr =
sin(0) cos(6)
Pitfall Warning!
[) These formulas assume that the x-axis points right and the y-axis points up, if
’ the y-axis points down in your implementation, you need to swap the matrices.

3 THE MATHS BEHIND GAME DEVELOPMENT 37

2D Game Development: From Zero To Hero

3.15.2.2 Rotating referred to an arbitrary point

The biggest problem in rotation is rotating an object relative to a certain point: you need to know the point of rotation

(a:p7 yp) in relation to the origin of the coordinate system you’re using, and modify the matrices as follows:

In short, you need to rotate the item by first “bringing it centered to the origin”, rotate it, and then bring it back into

its original position.

3.15.3 Shearing

During stretching, we used the elements that are in the “main diagonal” to stretch our objects. If we modify the

1"

elements in the “anti-diagonal”, we will obtain shear mapping (or shearing).

Shearing will move points along a certain axis with a “strength” defined by the distance along the other axis: if we

shear a rectangle, we will obtain a parallelogram.

A shear parallel to the x-axis will have the following matrix:

Figure 19: Shearing along the x and y axes

3 THE MATHS BEHIND GAME DEVELOPMENT 38

2D Game Development: From Zero To Hero

3.16 Basics of Probability

Games can make heavy use of probability: for instance when spawning items and treasures. Having a basic grasp

of how probability works can make things a lot easier.

3.16.1 A simple definition of probability

We will define the probability of an event A with a fraction:

The outcome is A
P(A) =
(4) All Outcomes

The numerator is called “event space”, while the denominator is called “sample space”.

For instance: let’s take a coin. We want to calculate the probability that a coin toss ends with “head”: first we count
how many outcomes are possible. Since a coin can land on “tails” or “heads”, we have 2 possible outcomes, and

head is only one of them.
For practicality, we will call “Heads” H and “Tails” T'.

Thus:

P(H) =~ =05

1
2

This result can be converted to a percentage, by multiplying it by 100. That means that there’s a 50% chance that

a coin toss ends in “heads”, shocking, | know.
What if we wanted to know the probability of a coin “not landing on heads”?

Here's a useful formula:

P(A) =1 - P(4)

Thus, by applying such formula on our coin example we have:

Perfect. Everything as expected.

3.16.2 Probability of independent events

But what if we wanted to calculate the probability of more than one event?

3 THE MATHS BEHIND GAME DEVELOPMENT 39

2D Game Development: From Zero To Hero

If our events are independent (that means that the result of one doesn’t affect the result of others), we can use the

following formula:

P(Aand B) = P(AN B) = P(A) - P(B)

Let’s return to our coin example: if we wanted to know the probability of two coin tosses landing both on heads, we

would have:

P(H and H) = P(H) - P(H) =

Let’s demonstrate that intuitively: since the example is simple, we can literally count the possible outcomes:

Table 9: Counting the possible outcomes of two coin tosses

First Toss Second Toss

Heads Heads
Heads Tails
Tails Heads
Tails Tails

Now we know that there are 4 possible outcomes, and the “Heads + Heads” is only one of them. This confirms our

formula.

In the exact same way, we can calculate the probability of a “Heads + Tails” result:

P(H andT) = P(H) - P(T) =

And the previous table confirms our calculations.

Pitfall Warning!

‘ ‘ ‘ Someone may argue that the probability of “Heads + Tails” is % but that would not be
(] correct. We are still strictly tied to the events, that means that “Heads + Tails” (First
' toss is heads, second toss is tails), is different from “Tails + Heads"” (first toss is tails,

second is heads).

3.16.3 Probability of mutually exclusive events

In case the events are mutually exclusive (that means, if one event happens, none of the others can happen), the

following formula may be helpful in some occasions:

3 THE MATHS BEHIND GAME DEVELOPMENT 40

2D Game Development: From Zero To Hero

P(Aor B) = P(AUB) = P(A) + P(B)

Going back to our coin example: the probability of a coin toss being “either heads or tails” is % + % =1.

Another example could be done using a 6-sided dice: each face can be on top with a probability of %. Let’s calculate

the probability of either 1 or 6 being face up:

P(lor6)=P(1)+ P(6) =

| =

Considering the latest “tossing two coins” example, we can calculate the probability
of “one coin lands on heads and the other lands on tails” with the previous formulas,

since coin tosses tick both the “independence” and “mutual exclusivity” boxes.

P((HandT)or (Tand H)) = P(H and T) + P(T and H) =

| =
> =
N |

3.16.4 Probability of non-mutually exclusive events

Not all events are mutually exclusive. Let’s think, for instance, about a deck of cards: what if you wanted to know

the probability of drawing either a card of hearts or a face card (Jack, Queen or King)?

We need to use a different formula in that case, which is the following one:

P(Aor B)=P(AUB)=P(A)+ P(B) — P(Aand B)

Why are we subtracting P(A and B)? Because if we didn’t, we would be counting the
face cards of hearts twice: once when we count the card of hearts, and once when we

count the face cards.

Let’s continue with our example.

A standard deck has 52 cards, 13 for each seed. This means we would have 13 cards of hearts: P(A) = %—g’

The same deck of cards also has 3 “face cards” for each seed, totalling 12: P(B) = %

Since there are face cards of the hearts seed, we need to account for those too, totalling 3: P(A and B) = 5%

This means that the probability we’re looking for is calculated as follows:

3 THE MATHS BEHIND GAME DEVELOPMENT 41

2D Game Development: From Zero To Hero

13 12 3 22 11
P(AorB)=P(A)+ P(B) — P(Aand B) = 5—2—1—5— SRR

3.16.5 Conditional Probability

Advanced Wizardry!

Conditional probability doesn’t have a lot of uses in game development, but it's worth
mentioning it if you want to have a probabilistic approach to Al. Feel free to quickly

skim through this section.

Sometimes you may need to consider the probability of a certain event, given that another event happens. This is

called “conditional probability”, and it can be calculated as follows:

_ P(Aand B) P(ANB)
PAB) =5 = F(B)

Conditional probability can be used to enrich the decision making used in enemy Al, for instance.

Let’s take a concrete example, taken straight from the famous tabletop RPG Dungeons&Dragons, and see how

probability can be applied to decision making.

You're fighting against an enemy. Both you and the enemy are close to fatal damage: you have 1HP, while
the enemy has 3HP left.

To attack an enemy you need to roll a 20-sided dice (called a d20): if the number rolled is 13 or higher you
will hit, else you will miss.

If you hit, you will roll a 6-sided dice (called a d6): the number rolled will decide how much damage you will
deal, so you need 3 or more.

We need to find the probability of killing the enemy within the next turn to decide our next move.

First of all, let’s name the events:

* H Will be the event “hit”, which means that the d20 rolled a number that is 13 or higher.

* F Will be the event “fatal damage”, which means that the d6 rolled a number that is 3 or higher.

Now we will calculate the probabilities we need for our calculation:

PH) =S5 ~ 2
25
4 9
Py =2_2
(F)=5=3

Our objective is calculating “the probability of doing at least 3HP of damage, given that we hit the enemy”. This is

represented as:

3 THE MATHS BEHIND GAME DEVELOPMENT 42

2D Game Development: From Zero To Hero

P(FNH)

P(FIH) = =5

This means we will have to calculate another probability, which is quite easy:

2 2 4
P(FFWH):P(F)-P(H)zg.g:B

Now we are ready to calculate everything we need:
P(FNH) 3 4 5 2
P(FIH)= —~— /-1 — .= _ =
(FIN) =5y =¥ =533

Given a 66% chance of success, you may decide that attacking is worth the risk. Such decision may be hard-coded
into an Al, for instance if the probability is higher than 50% the Al may choose to attack instead of retreating and

call for backup.

3.16.6 Uniform Distributions

In most cases, we will speak in terms of “uniform distributions”, that means that we will be operating on a system

where all outcomes have the same probability of happening.

That means that all dices are “fair”, all coins are “fair” and all our “bingo bags” have only one instance of a certain
number, all of the same size, shape and feel (thus making it impossible for a number to appear more often than any

other).

In the grand scheme of things, we are assuming that the random() function of our programming language is a uniform

distribution, where any number may come out with the same probability of any other.

3.16.7 How probability is used in games

You can use probability to govern how items spawn: surely you want more precious items to spawn more rarely (with

less probability), while more common items should spawn more often.
Let’'s say we want an item to spawn with 20% probability: how can we do it?

20% probability can be rewritten as the decimal 0.2, such decimal can be obtained with the fraction % We have

practically solved the problem: we decide on one number between 1 and 5 (inclusive) and we will know that such

number will be “extracted” 20% of the time.

Listing 2: 1 (out of 5) will be extracted with about 20% probability

1 function main(){

2 int happened = 0

3 // Monte Carlo Method we do 10000 "extractions"
4 repeat 10000 times{

5 // Get a random number between 1 and 5

3 THE MATHS BEHIND GAME DEVELOPMENT 43

2D Game Development: From Zero To Hero

6 int n = get random integer between 1 and 5 inclusive
7 if n == 1:

8 // If it's 1, we have a match!

9 happened = happened + 1

10 }

1 // We print the result

12 print(happened / 10000)

13 }

We will obtain the following result.

Figure 20: Running the probability_20 example shows the probability floating around 20%

But what if we wanted to be a lot more precise? Let’s say we want to spawn an item with 13% probability, how would

we go at it?

It's actually pretty simple: out 13% probability can be represented by the fraction %. Each number between 1 and

100 (inclusive) has a ﬁ chance of being extracted. Since extracting one number bars any other number to appear

in that extraction we can use the “mutually exclusive events” formula.

1 1 1 1
P(lor2or..or13)=P(1)+P(2)+ ..+ P(13) = 700+ Too +... 4 100 = %

‘ If the example is not 100% clear yet, try reading the previous formula right-to-left. That

may help.

This means that the event “a number between 1 and 13 appears” has a 13% probability of appearing. We can
simplify that statement with “a number less or equal than 13”. We can experiment that easily with the following

code:

Listing 3: A number less or equal than 13 (out of 100) has 13% probability of appearing

1 function main(){

2 int happened = 0

3 // Monte Carlo Method we do 10000 "extractions"
4 repeat 10000 times{

5 // Get a random number between 1 and 100

3 THE MATHS BEHIND GAME DEVELOPMENT 44

2D Game Development: From Zero To Hero

6 int n = get random integer between 1 and 100 inclusive
7 if n <= 13:

8 // If it's less or equal than 13, we got a match

9 happened = happened + 1

10 }

1 // We print the result

12 print(happened / 10000)

13 }

Figure 21: Running the probability le 13 example shows the probability floating around 13%

‘ You can extend the example above to fractions of a percentage by using bigger num-

bers: if you wanted a 13.5% probability, you would use all numbers less than or equal

to 135, out of 1000.

3.16.8 Tiered Prize Pools

We can use what we learned with probability to create a tiered prize pool. For instance we decide that killing a

certain enemy will always drop something, the tier of such item is according to the follow probability list:

* 50% probability for a common item to drop (for instance a scrap of leather);
* 30% probability for an uncommon item to drop (like a lower-grade potion);
* 15% probability for a rare item to drop (a good sword, for instance);

* 5% probability for an epic item to drop (a unique armor, for example);

30% 5%
Uncommon Epic
50% 15%
0 Common Rare 100

Figure 22: Intuitive representation of our prize pool

In that case we can chain ifs to bring our tiered prize pool to life:

Listing 4: How to implement a tiered prize pool selector

1 function get_tiered_drop() -> int{

2 // 1 = Common, 2 = Uncommon, 3 = Rare, 4 = Epic
3 int n = get random integer between 1 and 100 inclusive
4 if (n <= 50){

3 THE MATHS BEHIND GAME DEVELOPMENT 45

2D Game Development: From Zero To Hero

10

11

12

14

15

16

17

18

20

21

22

23

24

// Common Tier
return 1;
3
if (n <= 80){
// Uncommon Tier
// Since n <=50 has already returned false, we know this
// branch will only happen if 50<n<=80
return 2;
}
if (n <= 95){
// Rare Tier
// Since both n<=50 and n<=80 both returned false, we know
// this branch will only happen if 80<n<=95
return 3;
3
// Epic Tier
// All other branches failed, so we'll get here only if
// 95<n<=100

return 4;

3.16.8.1 Introducing a “luck” stat

In many RPGs there is a “luck” statistic that affects how item drops happen, in that case we will need to change how

tiered prize pools are given out. Things can get complicated quite quickly.

Let’s imagine a simple situation: one point of “luck” gives a 1% probability of getting an item of each tier higher

than “Common”, while at the same time reducing the probability of finding a “common” item.

At a first glance, it seems simple: take each “non-common” class and “add 1”, then take the “common” class and

“remove 1 for each point given”. But what would happen if the luck stat is higher than the probability of a “common”

item? It should probably start taking away probability from “uncommon” items to give out “rare” and “epic” items.

Let’s see a possible implementation:

Listing 5: A possible implementation of a luck stat

10

11

12

// Our probabilities, from least to most common
List pool = [

"EPIC": 5,

"RARE": 15,

"UNCOMMON": 30,

"COMMON": 50,

// Our "luck stat": each point gives 1% more chance to get a higher-tier item

int LUCK = 25;

// We cap the Luck stat at 100, the limit is 100% epic items

3 THE MATHS BEHIND GAME DEVELOPMENT 46

2D Game Development: From Zero To Hero

13 LUCK = min(LUCK, 100);

14

15 // We "overload" the prize pool, making the sum go over 100%
16 List overloaded_pool = new List();

17

18 for each item, probability in pool:

19 append the pair "item: probability + LUCK" to the overloaded pool
20

21 // We calculate how much we "overloaded" the prize pool

22 int overload_factor = sum(probabilities in overloaded_pool) - 100;

23

24 // We rebalance the prizes to a total of 100, from most to least common
25 List rebalanced_pool = new List();

26 // We need to start from the most common, which means we will iterate backwards

27 for each item, probability in overloaded_pool, going backwards{

28 // This will be modified later, if the pool is "overloaded"
29 int new_probability = probability;

30 // If the prize pool is still "overloaded"

31 if (overload_factor > 0){

32 // We calculate a "discharge factor" of sorts

33 int value_to_remove = min(probability, overload_factor);
34 // We reduce our "overload"

35 int overload_factor = overload_factor - value_to_remove;
36 // And put the new probability for the class

37 new_probability = probability - value_to_remove;

38 3

39 // We append the new pool item

40 append the pair "item: new_probability" to the rebalanced_pool;
a

3 THE MATHS BEHIND GAME DEVELOPMENT

2D Game Development: From Zero To Hero

4 Some Computer Science Fundamentals

The computing scientist’s main challenge is not to get confused by the

complexities of his own making.

Edsger W. Dijkstra

In order to understand some of the language that is coming up, it is necessary to learn a bit of the computer science

language and fundamentals.
This chapter will briefly explain some of the language and terms used, their meaning and how they contribute to

your activity of developing games.

4.1 Number representations

When you work with computers, it's impossible to avoid learning a bit of number representations. Computers work
with a different logic than humans do: humans have complex minds and thoughts, while most of the time computers
work in ones and zeroes. Most of what we see on a screen can be reduced to electrons going through a semiconductor

in kind of an orderly fashion: changing from 0 volts (ground) to 5 volts.

4.1.1 The most used representations

Here we will take a quick look at the most used representations. Some are more fundamental than others, but they

are all useful in their own way.

Each representation will use a subscript to represent its representation. If no subscript is present it means the

standard decimal representation is used.

4.1.1.1 Decimal

This is the standard decimal notation everyone is used to, we have 10 digits at our disposal:

0123456789
And we place them in certain positions (units, tens, hundreds, thousands, etc...) to represent a certain quantity. We
will use this as a basis for all other representations.

So if you want to represent 9 + 1 you will use the 1 digit, followed by the 0 digit to make 10.

4.1.1.2 Binary
This is the most used representation in computer science, we have only two digits at our disposal: 0 1.

Thus if you want to make 14, + 15, you will have to use the 1 digit, followed by the 0 digit, thus making 10p;,,,

which is the binary representation of 2.

Here are the first 10 numbers for comparison purposes:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 48

2D Game Development: From Zero To Hero

Table 10: Comparison between decimal and binary representations

Decimal Binary

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010

Binary numbers can be used at low level to represent any kind of “binary condition” too: yes/no, true/false are
usually mapped to 1 and 0 respectively. This will probe useful in some cases where we will use “binary numbers” to

represent groups of “binary conditions” in a compact way, but that’s an advanced thing we’'ll see later.

4.1.1.3 Octal

In the octal representation we have 8 digits at our disposal:

01234567

Thus the representation of the decimal number 8 in the octal system is 10,.¢.

The octal number system doesn’t find much use in computer science besides being a quicker way to represent binary

numbers. The conversion is quite easy and will be explained in a bit.
Here's a quick comparison between decimal and octal representations:

Table 11: Comparison between decimal and octal representations

Decimal Octal

0 0
1 1
2 2
3 3

4 SOME COMPUTER SCIENCE FUNDAMENTALS 49

2D Game Development: From Zero To Hero

Decimal Octal

4 4
5 5
6 6
7 7
8 10
9 11
10 12

4.1.1.4 Hexadecimal

Hexadecimal is definitely the second most used representation in computer science, due to how easy it is to represent

4 bytes in a very compact notation.

In the hexadecimal notation, we have sixteen digits at our disposal:

0123456789ABCDEF

Here's a table of the first 20 numbers to clarify a bit how things work:

Table 12: Comparison between decimal and hexadecimal representations

Decimal Hex

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A
11 B
12 C
13 D

4 SOME COMPUTER SCIENCE FUNDAMENTALS 50

2D Game Development: From Zero To Hero

Decimal Hex

14 E
15 F
16 10
17 11
18 12
19 13
20 14

4.1.2 Converting between decimal and binary

The algorithm to convert between decimal and binary is quite simple. It is an iterative algorithm that consists in
integer dividing the number by 2, until the result of the division is 1. The modulo of such divisions will make up our

binary number.

An example is worth a thousand words: let’s convert the number 38 to binary.

First of all, we integer divide 38 by two: the result is 19, there is no remainder, so we’ll use zero.

Dividend Remainder

38 0

19

Let’s continue: we integer divide 19 by two: the result is 9, with 1 as remainder.

Dividend Remainder

38 0
19 1
9

We iterate some more, by integer dividing until we get 1 as a dividend, at that point we make the last division, which

will have remainder 1:

Dividend Remainder

38 0
19 1
9 1

4 SOME COMPUTER SCIENCE FUNDAMENTALS 51

2D Game Development: From Zero To Hero

Dividend Remainder

4 0
2 0
1 1

Now we just need to read our remainders from bottom to top. So the binary representation of 384¢. is 100110p;,,.

This is actually a much more generic algorithm: you can convert from decimal to octal
and hexadecimal forinstance, just by dividing by 8 and 16 respectively. You can convert

38 to octal and hexadecimal as an exercise: the results are 46,.; and 26,

4.1.2.1 Two's complement

So far we’ve seen how to convert positive integers from decimal to binary, but how do we represent negative

integers?

That's where “two’s complement” representation comes into play: there is a bunch of theory behind why it’s called

this way, and how it works, but what we need to know will be how to represent a negative number.

Let’s start with a simple example with 3 binary digits (this means we’re pretending our computer can process only

up to 3 bits):

Decimal Binary

-4 100
-3 101
-2 110
-1 111
0 000
1 001
2 010
3 011

As you can see, the most significant bit being set (that means having value of 1) is a telltale sign that a number
is negative. But there are some interesting features about two’s complement that make it a very nice method of

representing integers.

This is because it makes easier to implement hardware that does operations on such numbers. If we sum 3 and —3

in two’'s complement we will obtain the following:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 52

2D Game Development: From Zero To Hero

011
+ 101
1000

This may look completely wrong, but since our “computer” can only process up to 3 bits, the left-most bit will be

discarded, giving us the right result: 000;,.

Now let’s see how to represent negative numbers in two’'s complement.

I To represent a negative binary number in two’s complement you flip all the bits of such number, then add 1.

As usual, an example is worth a thousand words. We want to convert the number —38 into binary.

First of all we need to define what our range of numbers will be, so that we know how many bits we will use. This is
done because this range will be equally split between positive and negative numbers. In this example | will choose

a normal 8-bit representation, which can represent numbers spacing from -128 to 127.

The first step is to convert 38 to binary, which as we saw is 100110y;,,. We will pad this binary number to 8 bits,

obtaining 001001104;,, as a result.
Now we just need to invert the all the bits in the number, obtaining 11011001, as a result.

Last step is adding 1 to what we got in the previous step, thus the final result is 11011010p;,,.

The more perceptive of you may have noticed a problem: what if we tried to represent
the number 128 with 8 bits?

We would obtain 1000000;,, which is actually the representation of -128 in two’s com-
plement. This is called an “integer overflow”, so be careful when mixing unsigned and

signed integers.

4.1.2.2 Floating point

[This section is a work in progress and it will be completed as soon as possible]

4.1.3 Converting between binary and octal

As mentioned before, octal can be used as a “shorthand way” to represent binary. The conversion is pretty simple.

To convert from binary to octal, take the binary digits in groups of 3 (with the necessary padding) and convert

them in octal. Then just “stick them together”.

Let’s take our number 38, it has the following representation:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 53

2D Game Development: From Zero To Hero

100 110y,

100p;,, converts to 4,.¢, while 110p;,, converts to 6,.;. If we stick them together we obtain the final result: 46,¢;.

4.1.4 Gray Code

Advanced Wizardry!

Gray code isn’t really used in game development, but it will be briefly explained here

since it will be used in Karnaugh Maps

Gray code (sometimes known as “reflected binary code”) is a particular ordering of the binary system where two

successive values differ by only one bit.

Gray code is used in many fields, from Digital (and cable) TV (for error-correction) to analog to digital conversion. In

this book we will use it as a representation inside Karnaugh Maps.

Here is a simple representation of the first 10 numbers in decimal, binary and gray code:

Decimal Binary Gray Code

0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111

4.2 Basics of Logic

If we want our algorithms to be smart enough to be useful, we have to deal with conditionals. That's where logic

comes in. In this section we will take a quick look at truth tables as well as logic operations.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 54

2D Game Development: From Zero To Hero

4.2.1 Truth tables

Truth tables are used to represent the output of a logic operation. It represents the inputs on the left side, while on

the right side the result is shown.

Truth tables in this book will have the following look:

4.2.2 Common operators

A B f
0 0 o
0 1 0
1 0 1
1 1 0

After we distinguish “true” (1) from “false” (0), we will need to start mixing and matching them (similarly to what

we do with numbers). That's where operators come into play: they are a bit different than what we're used to in

arithmetics, but they are quite intuitive.

4.2.2.1 AND

The “AND” operator is a binary operator that outputs 1 when both inputs are 1. Here is its truth table:

A B AND
0 o o
0 1 0
1 0 0
1 1 1

This operator is used to express conditionals where you want two conditions to be true at the same time.

4.2.2.2 OR

The “OR” operator (sometimes called “inclusive or”, as opposed to the XOR operator) is a binary operator that

outputs 1 when either of the inputs is 1, including the case when both are 1. Here is its truth table:

A B OR
0 0 0
0 1 1
1 0 1

4 SOME COMPUTER SCIENCE FUNDAMENTALS

55

2D Game Development: From Zero To Hero

This operator is used to express conditionals where you want at least one condition to be true.

4.2.2.3 NOT

The “NOT” operator is a unary operator that takes a single input and “inverts” it. That means that if the input is 1,

the “NOT” operator will output 0, if the input is 0 the “NOT” operator will output 1 instead.

Here is its truth table:

A NOT
0 1
1 0

4.2.2.4 XOR

The “XOR” operator (called “exclusive or”) is an operator that takes two input and outputs 1 when only one of the

two inputs is 1. If both inputs have the value 1, the “XOR” operator will output 0.

Here is its truth table:

A B XOR
0 0 0
0 1 1
1 0 1
1 1 0

This operator is used when you want to express conditionals where only one of the two inputs is true.

4.2.3 Logic operations vs bitwise operations

Advanced Wizardry!

The confines between logic operations and bitwise operations can get blurry. This
section introduces bitwise operations and alternative representations of data as a way

to fit more data in less space. Feel free to skim over this section.

So far we’ve seen operations that work on single binary digits, which can be seen as the numeric representation of

logical statements (0 meaning “false” and 1 meaning “true”). These are logic operations.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 56

2D Game Development: From Zero To Hero

Such operations can be applied on a bit-by-bit basis to groups of bits, that’s when we talk about about “bitwise

operations”.

01100010 AND
0101 1010
0100 0010

As you can see the bitwise AND operation takes each bit of the two bytes and does an “AND” operation on each one

of them.

4.2.3.1 Packing more information with less

Let’'s imagine the following situation: we have a structure that represents a tile in a maze. We want to efficiently

store whether each side of a certain tile has a wall.

This can be solved by using a 4-bit positive integer and having each bit represent a side of the tile: if that bit is 1,

there is a wall, 0 otherwise.

After creating a convention, we can start storing data. For instance we can have the bits representing walls starting

from top, going clockwise.

xxx1 xxx1

1xxx 1111 xx1x 1xxx 1011 xx1x
X1xx X0xx
xxx1 xxx1

1xxx 1001 xx0x 0xxx 0101 xx0x
X0xx x1xx

Figure 23: How we can pack wall information with a 4-bit integer

This convention could be summarized as follows:

« 0001 represents a “top wall”;
* 0010 represents a “right wall”;
* 0100 represents a “bottom wall”;

* 1000 represents a “left wall”.

This means that 0110 represents a tile having two walls: on the right and bottom side (this is the integer number 6,
by the way). If we wanted to check if a certain tile has a wall, we would just need to AND it (bitwise) with the number

that represents such wall.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 57

2D Game Development: From Zero To Hero

If the result of such operation is not zero, the wall we searched for is in our tile. Continuing with our example, if we

test for a right wall we will obtain zero:

0110 AND
0001
0000

But if we test for a bottom wall, we will obtain something that is not zero:

0110 AND
0100
0100

4.2.4 De Morgan’s Laws and Conditional Expressions

De Morgan’s laws are fundamental in computer science as well as in any subject that involves propositional logic.

We will take a quick look at the strictly coding-related meaning.

De Morgan’s laws can be written as:

not (A and B) = not A or not B

not (A or B) = not A and not B

In symbols:

(ANB)=AV B

(AvB)=AAB

These laws allow us to express our own conditionals in different ways, allowing for more readability and maybe avoid

some boolean manipulation that can hinder the performance of our game.

4.3 Algorithms

When you talk about computer science, you always hear about algorithms: what is an algorithm?

An algorithm can be informally defined as a finite sequence (as in “not infinite”) of instructions that are followed to

solve certain problems.
There are numerous examples of algorithms, among them we can find:

* Finding the Greatest Common Divisor (GCD) of two numbers;

* Finding the largest number in a list;

4 SOME COMPUTER SCIENCE FUNDAMENTALS 58

2D Game Development: From Zero To Hero

¢ Calculating the nth Fibonacci number;

Algorithms are usually represented in flow charts, or it’'s more modern counterpart: the UML activity diagram. Some-
times algorithms can be represented in “plain language” (in that case we may end up talking about “pseudocode”)

or in a programming language.

4.4 Recursion

Starting from the (arguably hard) theme of recursion may seem weird, but it is important to understand recursion

as soon as possible so we can make the best use of it.

There is a joke | like telling around about recursion:

I To understand recursion, you must first understand recursion.

What is recursion? Recursion is the usage of a function that calls itself.

Your first question will probably be: wouldn’t that make the program lock up forever in some kind of loop? It may.

But if you're careful, recursion is an amazing tool that allows you to earn a lot of clarity and brevity.

Let’s imagine a simple algorithm: we want to make our program count backwards from a number n to 0. In a simple

“loop” fashion, we may write the following:

Listing 6: Counting from n to 0 using a loop

1 function count_backwards(int n){

2 // Condition for the loop

3 while (n != 0){

4 // The function body

5 print(n);

6 // We update the condition to count down
7 n=n-1;

8 3

s }

Pretty simple, right? A real-world example would be counting back from 10 to 0: we print 10, we subtract 1 to get

9, we print 9, subtract 1 to get 8, ...

Let’s turn our thinking around for a second. We can see counting back from to 10 to 0 like this: we print 10 and then
we count backwards from 9. Counting backwards from 9 would just mean printing 9 and then counting back from 8,

etc...

We just turned our simple loop into a recursive function:

Listing 7: Counting from n to 0 using recursion

1 function count_backwards(int n){

4 SOME COMPUTER SCIENCE FUNDAMENTALS 59

2D Game Development: From Zero To Hero

2 // Stop condition

3 if (n == 0){

4 // If we don't do this, we won't print @
5 print(n);

6 return;

7 3

8 // Procedure

9 print(n);

10 // Recursive call

1 count_backwards(n-1);
2}

Recursive functions have three main components:

* Abase case (sometimes called a “stop condition”): this allows the function to stop calling itself when a certain
condition is reached;

* A procedure that elaborates on data or simply does something (in our example, it just prints the number);

* A recursive call to the same function we are writing, the call is done in a way that every call gets closer to
the “stop condition”. It can be done by calling the function on a subset of its argument (if it is a list), until the

list has only 1 item or on a smaller number (if the function argument is a number instead).
Recursion can be classified in many ways:

* By the number of recursive calls: single vs multiple recursion;
* By how the recursive call is made: direct (a function calls itself directly) vs indirect (a function A is called
by another function B, which in turn is called by function A)

* By the position of the recursive call: head vs tail recursion.

| want to underline the last distinction: what we’ve seen in the previous listing is called “tail recursion”: the recursive

call is done after everything else (the procedure).

Head recursion is instead done when the recursive call is done before the procedure starts, so we can transform our

“count down” function to a “count up” just by switching from “tail” to “head” recursion and adding a print statement.

Listing 8: Counting from 0 to n using head recursion

1 function count_forwards(int n){

2 // Stop condition

3 if (n == 0){

4 // If we don't do this, we won't print 0
5 print(n);

6 return;

7 3

8 // Recursive call

9 count_forwards(n-1);
10 // Procedure

1 print(n);

12}

4 SOME COMPUTER SCIENCE FUNDAMENTALS 60

2D Game Development: From Zero To Hero

4.5 Programming Languages

Programming languages are a programmer’s way to talk to a computer (or a console): they are a way to make an

electronic apparatus do something (without involving analogue electronics).

4.5.1 Classifying programming languages

Programming languages can be distinguished by many traits, it is important to know such differences, even though

you may have already chosen your programming language.

4.5.1.1 By how they build

The way that a programming language gets you from code to “working product” can heavily influence both the final

product as well as the speed of development.

4.5.1.1.1 Compiled Languages

Compiled languages need to go through a building process before it is possible for the product to be run anywhere.

This has some advantages, as well as some disadvantages.

model: posix

Supported LTO compression algorithms: z1lib zstd
gce version 12.1.8 (GCC)

Figure 24: Example of a compiler output (G++)

Among the disadvantages we have that the final product is usually non-portable, that means it cannot be run any-
where besides the machine it was compiled for. This means that you will have to create separate builds for each

console, as well as different builds for each operating system.

Another disadvantage can be development speed: before you can test anything your game needs to be rebuilt. Some-
times the rebuild process can be quick (thanks to some techniques that avoid building things that didn’t change),

sometimes it can be long.

A very strong advantage of compiled languages is speed. Being essentially compiled to machine code, compiled
languages have an easier time squeezing every last drop of performance from the platform you’re building for. In
addition, some languages can use features to physically remove unused code from the build: this way release builds

can be much faster than debug ones, because the debug code is physically removed.

Among compiled languages we can find C and C++, as well as Rust and Go.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 61

2D Game Development: From Zero To Hero

4.5.1.1.2 Interpreted Languages

Interpreted languages, in their strictest sense, are at the other side of the spectrum: the program is not compiled
ahead of time but instead the source code is fed into an interpreter, which executes each row of instructions, one

after the other.

Most interpreted languages feature an interactive REPLy; (read-eval-print loop) which allows to test code in real

time.

penaz@PenazMW2 & =
Python 3.18.4 (main, Mar 25 2022, 16:46:29) [GCC 11.2.8] on linux
Type "help", "copyright", "credits" or "license" for more information.

>

Figure 25: Python’s REPL Shell

They have the disadvantage of being usually slower than compiled languages and it's not easy to create builds
that physically remove unused (debug) code without having to modify the sources manually. Also each console or

operating system will need to have the interpreter installed, which may be an issue.

The advantage is in development speed: you can edit the source code and immediately run the interpreter to see
the result, without having to wait for a new build to complete. Another advantage is portability: you don’t need to
create a new build for every system you want to run your game in, as long as an interpreter is available your game

will run.

An example of a purely interpreted language is BASIC.

4.5.1.1.3 Hybrid Approaches

In any project, the ability to code quickly is as important as the performance of the final product: there is a thin
balance to strike between “having a product with good performance” and “having a product that is released when
needed”. If your product releases too late, it doesn’'t matter how performing it is, the market will have chosen

another product. If your product releases early but it underperforms, it will be replaced by better products.
Thus some hybrid approaches have been invented: one of these is, for instance, bytecode-compiled languages.

Bytecode-compiled languages (sometimes called “Languages with intermediate representation”) are something that
is not quite compiled, but it's not precisely interpreted either: the code is converted into bytecode, which is then

fed to the interpreter (or “virtual machine”) to run.

Being a representation that is “closer to the hardware” than the original source code, there is a gain in performance,

while keeping the flexibility of interpreted code.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 62

2D Game Development: From Zero To Hero

Random Trivia!

Some programming languages, like Haskell and Vala use the C programming language

as an intermediate language, since C was meant to be an abstraction of the assembly

language.

Other approaches include Just-In-Time compiling, which trades off some longer starting times (sometimes called

“warm-up times”) for better overall performance.

Among the bytecode-compiled languages we can find Java and Python, while Lua can be considered a Just-In-Time

Compiled language (thanks to Lua)IT).

4.5.1.2 By Paradigm

A programming paradigm is how the programming language lets you program. There is not a single, definitive way

to code, thus programming languages can be distinguished by their paradigm.

4.5.1.2.1 Imperative Languages

Imperative languages are probably the most spread in modern programming: they make use of “orders” (called

“statements”) to change the status of the program.

This paradigm makes use of variables, statements, subroutines to make the program look like a set of instructions,

a recipe, to make the program do what it needs to do (an algorithm).

Imperative languages include C, COBOL, Basic and Fortran.

4.5.1.2.2 Functional Languages

Functional languages make programs work by applying and composing functions (in the mathematical sense). Func-

tions can be bound to variables and chained together (composed) to reach the result.

Functional languages include Haskell, Common Lisp and Scheme.

4.5.1.2.3 Multi-paradigm Languages

Many programming languages tend to “meld together” many programming paradigms, allowing (for instance) for

functional style programming in imperative languages.

This means that functions can be bound to variables and passed around as any other object, they can be composed

to reach the result if the programmer decides to do so (for instance for readability).

Multi-paradigm languages include Python, Lua and Go.

4.5.1.3 By the way types are determined

4 SOME COMPUTER SCIENCE FUNDAMENTALS 63

2D Game Development: From Zero To Hero

Sometimes underrated, how types are evaluated can completely change the way you program your game. Not

knowing precisely how your language of choice treats types can lead to hard-to-debug issues.

4.5.1.3.1 Static Typing

Statically typed languages have their types decided ahead of time (usually when the program is compiled) and

usually they cannot be changed.

This means that you have to have full awareness of which types will be used while writing your game. Which can be

difficult at times.

Statically-typed languages include C, C++ and C#, as well as Java.

4.5.1.3.2 Dynamic Typing

Dynamically typed languages have their types decided at runtime. This allows for simpler syntax, but at the cost of

lower performance, due to the fact that types are determined and verified at runtime.

Dynamically-typed languages include JavaScript and Ruby.

4.5.1.3.3 Duck Typing

Duck typing is probably the most misunderstood typing system. It can be described by the following sentence:

I If it walks like a duck and it quacks like a duck, then it must be a duck.

This means that types are inferred by their behaviour (their capabilities), thus creating a series of -1like objects that
behave more or less the same. This means that types can make use of the iteration capabilities of the language as

long as they implement some basic methods that allow iteration (like nextElement() and length()).

This means that we have “file-like” objects, which behave like files, are used like files, but not necessarily have
a counterpart in mass storage (they could be in-memory files), or “iterables” (sometimes called “list-like”) which

behave like lists of items, but may actually be something else (for instance strings could be seen as a “list of letters”).

In the end, in duck typing, interfaces are treated as some kind of “informal protocol” that tells the language how
to use an object. The “protocol” doesn’t even need to be implemented fully: if you have a “file-like” object that
implements only the reading method, you can still use it in the same way you’d use a file, as long as you don’t try

to write to it.

Duck Typing is used in the Python programming language.

4.5.1.4 By the “strength” of typing

How types are treated after each variable is instantiated can be the source of a lot of headaches while coding, thus

it is paramount to be aware of how strong your preferred language’s typing system is.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 64

2D Game Development: From Zero To Hero

4.5.1.4.1 Strong Typing

Strongly typed languages don’t allow one type to be treated like it was another type without an explicit conversion
(usually called “cast”). This prevents unforeseen automatic type conversions that may lead to bugs and faults being

undetected at compile time or runtime.

Some examples of strongly typed languages are C++, C#, Python and Java.

4.5.1.4.2 Weak Typing

Weak typed languages allow one type to be treated like another without explicit conversion. This may make the

syntax simpler, but may be source of unforeseen bugs.

For instance a string may be treated as it was a number, this means that in some languages (where the operator
+ means both “addition between numbers” and “joining strings together”) you may find that a result is a sum of

numbers instead of two strings joined together.

An example of a weakly typed language is JavaScript.

Random Trivia!

What about the good old C language? C has strong typing for the great majority of the

time, unless we consider the void* generic pointer. This kind of pointer can be used in

other pointer variables without an explicit cast.

4.5.1.5 By memory management

Another way to classify programming languages is how you can (or have to) manage your memory.

4.5.1.5.1 Languages without Garbage Collection

Some programming languages allow you to play with your system’s memory as you wish: they give you all the tools

(pointers, references, ...) to manually allocate and free memory.

This comes with its advantages and drawbacks: higher performance is surely a big advantage. A huge disadvan-
tage is the fact that memory management is completely manual: dangling pointers and unreachable memory are

commonplace, because there is nothing to clear after you.

Non Garbage-collected languages include C and C++.

4.5.1.5.2 Garbage-collected Languages

Some other languages prefer taking away part of the control on memory to help avoiding the problems that non

Garbage-collected languages bring: there is something that cleans after you, which is the Garbage Collector.

The big disadvantage of this approach is that the garbage collector needs reference counting, CPU cycles to run,

which means that the whole program runs slower.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 65

2D Game Development: From Zero To Hero

Garbage collected languages include Java and Python.

4.5.2 Languages available for this book

Here is a quick rundown of how the languages used in the various editions of this book (excluding “pseudocode”,

which is not really a programming language) are classified.

e C++, a compiled programming language with strong static typing. It is multi-paradigm (although it was born

as an imperative language) and has no garbage collector.

* JavaScript, an interpreted language (although some engines support Just-In-Time compiling), with weak dy-

namic typing that supports some duck typing principles. It is multi-paradigm and features a garbage collector.

* Lua, a bytecode-compiled (or Just-In-Time compiled) language, with strong dynamic typing that supports

some duck typing principles. It is multi-paradigm and garbage-collected.

* Python, a bytecode-compiled language, with strong duck typing. It is multi-paradigm and garbage-collected.

4.6 Computers are (not) precise

There are many differences between humans and computers, among those there is one that will keep haunting us

in our journey: humans make calculations in “base 10” (decimal), computers make calculation in “base 2" (binary).

This requires computers to represent numbers differently, usually with the exponent+fraction representation (IEEE

754). Also computers have limited resources, thus have no concept of “infinity” (and conversely of “infinitesimal”).

Let’s assume a computer with a fixed (and reduced) precision and we execute the following C++ program (you can

just copy it verbatim):

Listing 9: A simple float precision test

1 #include <iostream>
2 #include <iomanip>
3

4 int main ()

s {

6 // This will reduce and fix the computer's precision for this
7 std::cout << std::setprecision(20);

8

9 float d1(1.0);

10 std::cout << "This 1.0: " << dl << std::endl;

11

12 float d2(0.1);

13 std::cout << "This 0.1: " << d2 << std::endl;

14

15 float d3(0.1%0.1);

16 std::cout << "This 0.01:" << d3 << std::endl;

17

18 bool x (0.1 + 0.1 .3);

19 std::cout << "This should be true (1): " << x << std::endl;

20

4 SOME COMPUTER SCIENCE FUNDAMENTALS

66

2D Game Development: From Zero To Hero

21 return 0;

22 3

We save it as “precision_test.cpp” and compile it with the following command line (on Linux):

1 g++ -Wall -Wextra -Werror -00 precision_test.cpp -o precision_test.bin

This program will temporarily set a reduced precision in our number representation, and try to output the values of

the numbers 1, 0.1 and 0.12 = 0.01, let’s see the results:

ecision_test.bir

penaz@Pena

2
should be 1.@: 1
1:

1
should be 2.1: ©.10000000149011611938
should be ©.01:0.0099999997764825820923
should be true (1): @

Figure 26: Results of the simple float precision test

With the number 1 it’s all good, but... what is going on with 0.1? What is all that garbage? The number 0.01 is even

worse! That's not even close! Why 0.1 + 0.1 4 0.1 comes out as not 0.3! What is maths anymore?

We have just met one of the (many) limitations of computers: computers cannot represent certain numbers without
“approximating”. Compilers and libraries exist to work around these issues, but we need to be ready to avoid

surprises.

Just to reiterate: this is not a problem of the single programming language, we can see that C++ is affected, but

also Python has the same issue:

Mar 15 2021, 17:

edits” or "license” for more information.

, May 7)
dits ! se' for more information

Y

ython. Type for help.

Figure 28: Python 3 doesn’t fare much better when it comes to precision

This is a computer issue in general: this may not be a huge problem for general use but, if we try to be too precise

with our calculations, this may come back to bite us.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 67

2D Game Development: From Zero To Hero

4.6.1 Catastrophic cancellation

Advanced Wizardry!

Catastrophic cancellation is one of the many pitfalls that you may encounter when
dealing with very small nhumbers. This doesn’t happen really often in the world of

game development, feel free to just skim through this mostly informative section.

With a name as dangerous-sounding as “catastrophic cancellation”, this sure looks like a dangerous phenomenon,

but it's only dangerous if we don’t know what it is.

Catastrophic Cancellation (sometimes called “cancellation error”) is an event that may happen when subtracting

two (usually large) numbers that are close to each other in value.

Warning: from here on, in this section, there will be some technical language. | will try to make it as simple and

understandable as possible.

Let's imagine a computer, such computer’s memory can handle at most 8 decimals while its A.L.U.g; (the unit that

takes case of “doing maths”) can handle at most 16 decimal places.

Now let’s take two numbers:

x = 0.5654328749846 y = 0.5654328510104

When we transfer such numbers in our memory, the computer will approximate such numbers to fit in its memory
constraints. We'll represent that by applying to each number a function fl() that we can read as “float representation

of this number”. So we’ll end up having:

Fl(x) = 0.56543287 fl(y) = 0.56543285

This is generally called an “assignment error”, where during the assignment to a variable, a number loses part of its

information.

Let’s try an calculate how off those approximations are (by calculating the percent “relative error”), just to get an

idea of what we lost by just loading the numbers on our “fake computer”:

5y =

w — 0.00000088%

= 0.00000017%

— fl
5, — ly ZJ;(@/)I

We can see that our approximations are very close to the numbers we want to calculate, now let’s calculate x — y.

Making things by hand we would have:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 68

2D Game Development: From Zero To Hero

r—y=0.239772 x 1077

That's a tiny number right there. Now let’s calculate fi(x) — fI(y), remembering that the A.L.U. will fill up to 16

decimals:

fl(z) — fl(y) = 0.5654328700000000 — 0.5654328500000000 = 0.0000000200000000 = 0.2 x 107

That doesn’t look so bad, unless we look at the “relative error”:

10239772 x 1077 — 0.2 x 1077

)
0.239772 x 10~7

=16.6%

We are off by 16% of the total result, this is actually really bad.

What happened? If you look closely, the numbers are really close and even have 7 decimal digits in common, since
our computer can memorize only 8 digits, the 9th to 13th decimal digits that looked so unimportant suddenly become

a huge part of the result (due to the subtraction) but are already lost.

4.7 Random Numbers are not really random

Computers are deterministic machines, given the same set of instructions and inputs, they will always return the
same output. Someone may think about “random number generators” and sure, those programs look like they spit

random numbers on your screen, but they actually don't.

The most important number when generating random numbers is called seed and it's the number used by the

generator to produce random numbers.

Let’s see an example of a random number generator in C++ (you can copy this program verbatim to try it):

Listing 10: A simple random number generation program

1 #include<iostream>

2 int main(){

3 // First of all we get the seed

4 unsigned int seed;

5 std::cout << "Type the seed: " ;

6 std::cin >> seed;

7 // Now we seed the randomizer

8 srand(seed);

9 // Small presentation

10 std::cout << "This generator will now generate 10 random numbers" << std::endl;
1 // Output 10 random numbers

12 for (int 1 = 0; i < 10; ++i) {

13 std::cout << rand() << std::endl;
14 }

4 SOME COMPUTER SCIENCE FUNDAMENTALS 69

2D Game Development: From Zero To Hero

15 // Finish the program
16 return 0;
17)

We can save this program as random_seed.cpp compile this program with the following command:

1 g++ -Wall -Wextra -Werror -00 random_seed.cpp -o random_seed.bin

When we run the program, it will ask us to input a seed (which in our case is a number), after that it will just print

10 random numbers based on that seed. What would happen if we ran the program twice and use the same seed?

e 1@ random numbers

enerate 1@ random numbers

Figure 29: Running a random number generator with the same seed will always output the same numbers

Random numbers generated by computers are never truly random, that’s why they are more properly called “pseudo-

random numbers”.

4.7.1 How to seed a random number generator

From what we have seen earlier, the seed of our random number generator is something we need to be mindful

about.

Choosing a static seed will make our game completely deterministic (if played in the same conditions), like we didn’t

use random numbers at all.

Some games use internal timers to see the random number generator, be it the time that the game has been running,
the time that has passed from the beginning of the mission or something similar. This allows you to have some kind

of “controlled RNG” that still has a bit of reproducibility.

Some choices expose the game to the possibility of RNG manipulation: where the player has partial or total control

over the random number generator, by performing specific actions at specific times, for instance.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 70

2D Game Development: From Zero To Hero

A very easy way to seed a generator is using the system time. Here’s a more advanced random number generator
that uses system time as its seed: if you run the program reasonably slow (not quicker than once a second) you will

see the numbers changing.

Listing 11: A random number generation program that uses system time as seed

1 #include<iostream>
2 #include<time.h>

3 int main(){

4 // First of all we get the seed

5 unsigned int seed = time(nullptr)

6 // We print it for reference

7 std::cout << "The current seed is:" << seed << std::endl;
8 // Now we seed the randomizer

9 srand(seed);

10 // Small presentation

1 std::cout << "This generator will now generate 10 random numbers" << std::endl;
12 // Output 10 random numbers

13 for (int 1 = 0; i < 10; ++i) {

14 std::cout << rand() << std::endl;

15 }

16 // Finish the program

17 return 0;

18)

We can save this program as rand.cpp compile this program with the following command:

1 g++ -Wall -Wextra -Werror -00 rand.cpp -o rand.bin

This is the result of the program being run twice, one second apart:

penaz@PenazMW2 eSS /rand.bin
The current seed is:1667851777
This generator will now generate 1@ random numbexs
1613303786
780154366
2080970745
2014960335
232397101
2044510406
1960776734
947950517
691212607
706142778

penaz@PenazMW2 e /rand.bin
The current seed is:1667851778
This generator will now generate 1@ random numbexs

1168494461
1449261863

890542202

Figure 30: Using the system time as RNG seed guarantees a degree of randomness

4 SOME COMPUTER SCIENCE FUNDAMENTALS 71

2D Game Development: From Zero To Hero

4.8 Estimating the complexity of algorithms

Now more than ever, you need to be able to be efficient. How do you know how “efficient” some piece of algorithm

is?

Seeing how much time it takes is not an option, computer specifications change from system to system, so we need

something that could be considered “cross-platform”.

This is where notations come into play.

There are 3 types of Asymptotic notation you should know: €2, © and O.

€)() represents a lower bound: this means that the algorithm will take at least as many cycles as specified.

O() represents an upper bound: it's the most used notation and means that the algorithm will take at most as

many cycles as specified.

©O() is a tight bound, used when the big-O notation and the big-{) notation have the same value, which can help

define the behavior of the algorithm better.
We will now talk about the most common Big-O notations, from “most efficient” to “least efficient”.

Pitfall Warning!

‘ ‘ ‘ Be mindful of one specific thing: these notations simply tie how the algorithm performs
[) in relation to how a certain variable grows (usually a dataset). If you know for certain
’ that a dataset stays relatively small, an algorithm with a “worse O() may not make a

huge difference or may even be more efficient.

4.8.1 0O(1)

An algorithm that executes in O(1) is said to execute “in constant time”, which means that no matter how much

data is input in the algorithm, said algorithm will execute in the same time.

An example of a simple O(1) algorithm is an algorithm that, given a list of elements (with at least one element),

returns True if the first element is null.

Listing 12: Example of an O(1) algorithm

1 function isFirstElementNull(elements) -> bool{

2 if (elements[@] is null){
3 return True;

4 Jelse{

5 return False;

6 3

7}

To be precise, this algorithm will perform both in O(1) and ©(1), so it will perform in ©(1).

4 SOME COMPUTER SCIENCE FUNDAMENTALS 72

2D Game Development: From Zero To Hero

4.8.2 O(log(n))

An algorithm that executes in O(log(n)) is said to execute in “logarithmic time”, which means that given an input of

n items, the algorithm will execute log(n) cycles at most.

An example of a O(log(n)) algorithm is the so-called “binary search” on a ordered list of items.

Listing 13: Example of an O(log(n)) algorithm (Binary Search)

1 function binarySearch(item[] elements, item element_to_find) -> int{

2 get middle_element;

3 if (element_to_find == middle_element){

4 return the middle element position;

5 Yelse{

6 if (element_to_find > middle_element){

7 perform binarySearch on the half of the list bigger than middle_element;
8 Yelse{

9 perform binarySearch on the half of the list smaller than middle_element;
10 ¥

1 3

12 return null;

13}

The best case is the time when you get the element to find to be the “middle element” of the list, in that case the

algorithm will execute in linear time: O(1) - You need at least one lookup (€2(1)) and at most one lookup (O(1)).

In the worst case, the element is not present in the list, so you have to split the list and find the middle element until

you realize that you don’t have any more elements to iterate - this translates into a tight bound of @(loggn)

4.8.3 0O(n)

An algorithm that executes in O(n) is said to execute in “linear time”, which means that given an input of n items,

the algorithm will execute at most n cycles.

An example of a simple O(n) algorithm is the one that prints a list, element by element.

Listing 14: Example of an O(n) algorithm (printing of a list)

1 function printList(items[] list){

2 for (each element in list){
3 print element;

4 3

5)

It's evident that this algorithm will call the print function n times, where n is the size of the list. This translates in a

©(n) complexity, which is both O(n) and (n).

There is no “best” or “worst” case here, the algorithm prints n elements, no matter their order, the alignment of

planets and stars or the permission of its parents.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 73

2D Game Development: From Zero To Hero

4.8.4 O(n-log(n))

An algorithm that executes in O(n-log(n)) executes in a time slightly longer than a linear algorithm, but it’s still con-

" u

sidered “ideal”. These algorithms are said to execute in “quasi-linear”, “log-linear”, “super-linear” or “linearithmic”

time.
Given an input of n elements, these algorithms execute n-log(n) steps, or cycles.
Some algorithms that run in O(n-log(n)) are:

e Quick Sort
* Heap Sort

¢ Fast Fourier Transforms (F.F.T.)

These algorithms are more complex than a simple example and would require a chapter on their own, so we'll leave

examples aside for now.

4.8.5 0O(n?)

Quadratic algorithms, as the algorithms that execute in O(n?) are called, are the door to the “danger zone”.

These algorithms can eat your CPU time quite quickly, although they can still be used for small computations some-

what efficiently.

Given an input of n elements, these algorithms execute n? cycles, which means that given an input of 20 elements,

we'd find ourselves executing 400 cycles.

A simple example of a quadratic algorithm is “bubble sort”. A pseudo-code implementation is written here.

Listing 15: Example of an O(n?) algorithm (bubble sort)

1 function bubbleSort(items [] A){

2 int n = length(A);

3 bool swapped = false;

4 dof{

5 swapped = false;

6 for (i from 1 to n-1 inclusive){
7 if (A[i-11 > ALiD{

8 swap(A[i-11, A[i]);
9 swapped = true;

10 }

1 3

12 } until (not swapped);

13}

Anything with complexity higher than O(n?) is usually considered unusable.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 74

2D Game Development: From Zero To Hero

4.8.6 0(2")

Algorithms that execute in exponential time are considered a major code red, an will usually be replaced with heuristic

algorithms (which trade some precision for a lower complexity).

Given an input of 20 elements, an algorithm that executes in O(2") will execute 22° = 1 048 576 cycles!

4.9 A primer on calculating the order of your algorithms
4.9.1 Some basics

When you estimate an algorithm, you usually want to calculate how it functions “in the worst case”, which usually

means that all loops get to their end (of the list or the counter) and everything takes the longest time possible.

Let’s start with an example:

Listing 16: A simple O(1) algorithm

1 // A simple 0(1) algorithm: assigning to a variable

2 int my_variable = 1;

This is a simple assignment operation, we are considering this instantaneous. So its complexity is O(l).

Now let’s see another algorithm:

Listing 17: A simple o(n) algorithm

1 // A simple 0(n) algirithm: iterating through a list
> for (item in my_list){

3 print(item);

In this case we are iterating through a list, we can see that as the list grows, the number of times we print an element
on our screen grows too. So if the list is n items long, we will have n calls to the output statement. This is an O(n)

complexity algorithm.

Now let’s take something we already saw and analyze it: the bubble sort algorithm:

Listing 18: The bubble sort algorithm, an O(n?) algorithm

1 function bubbleSort(items [] A){

2 int n = length(A);

3 bool swapped = false;

4 dof{

5 swapped = false;

6 for (i from 1 to n-1 inclusive){
7 if (A[i-11 > ALiD{

8 swap(A[i-1]1, A[i]);

9 swapped = true;

10 }

4 SOME COMPUTER SCIENCE FUNDAMENTALS 75

2D Game Development: From Zero To Hero

11 }
12 } until (not swapped);
13

This will require a small effort on our part: we can see that there are 2 nested loops in this code. What's our worst

case? The answer is “The items are in the reverse order”.

When the items are in the reverse order, we will need to loop through the whole list to get the biggest item at the

end of the list, then another time to get the second-biggest item on the second-to-last place on the list... and so on.

So every time we bring an item to its place, we iterate through all the list once. This happens for each item.

“n

So, in a list of length “n”, we bring the biggest item to its place “n times” and each “time” requires scanning “n

elements: the resultis n - n = n2.

The algorithm has time complexity of O(n2).

4.9.2 What happens when we have more than one big-0?

There are times when we have code that looks like the following:

Listing 19: A more complex algorithm to estimate

1 /) mmmmmmmm e
> int n = length(A);

3 bool swapped = false;

4 dof{

5 swapped = false;

6 for (i from 1 to n-1 inclusive){
7 if (A[i-11 > ALiD{

8 swap(A[i-1], A[i]);

9 swapped = true;

10 }

1 3

12 } until (not swapped);

y]

13
I A
15

16 for (item in A){

o

17 print(item);

1}

As we can see the first part is the bubble sort algorithm, followed by iterating through the (now ordered) list, to print

its values.

We can calculate the total estimate as O(n?) + O(n) and that would be absolutely correct, but as the list grows,

the growth rate of O(n) is very minor if compared to O(nQ), as can be seen from the following figure:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 76

2D Game Development: From Zero To Hero

10000

o(n)
o(n?)

8000 |-

6000 |-

4000 |-

2000 |-

Figure 31: O(n) growth rate, compared to O(n?)

So we can drop the O(n) and consider the entire algorithm as an O(n2) algorithm in its entirety: this means that
when dealing with complexity estimates, you always keep the terms that have the largest “growth rate” (check the
Big-O estimates comparison section for more details).

4.9.3 A problem with asymptotic complexity

An important problem with asymptotic complexity is that it tends to hide coefficients and smaller terms, no matter

how important they may be.
Let’s take an example: we need to order a list of 500000 elements and we found two algorithms:

« Algorithm 1 works in O(n?)
+ Algorithm 2 works in O(n), but its “non-simplified” complexity is O(10000007)

Which one would be more efficient? From a first inspection it may seem surprising that until we reach 1 million

elements, algorithm 1 is better performing.

If we plot how the CPU cycles behave for each algorithm, we can see how the reality is different.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 77

2D Game Development: From Zero To Hero

10000000 ——

raenz

1202

o 200000 400000 600000 800000 Tes06 1.26406

Figure 32: When coefficients have important values, asymptotic complexity may trick us

4.9.4 What do we do with recursive algorithms?

When recursive algorithms are involved, things get a lot more complex, and they involve building recursion trees

and sometimes you'll have to use the so-called “master theorem for divide-and-conquer recurrences”.

Such methods are outside the scope of this book as of now.

4.9.5 How do big-O estimates compare to each other?

Here we can see how big-O estimates compare to each other, graphically and how important it is to write not-

inefficient algorithms.

If we had to write it as an inequality, from more to least efficient, we would have something like this (only considering

Big-O notation):

O(1) < O(logn) < O(n) < O(n -logn) < O(n?) < O(2")

4 SOME COMPUTER SCIENCE FUNDAMENTALS 78

2D Game Development: From Zero To Hero

1000 -

900

700

600

500

400

200

o(1) —
0O(n)
O(n-log(n))
0o(n?)

Figure 33: Big-O Estimates, plotted

30

There is a very specific reason why the 0(2”) estimate is missing from the previous plot: we wouldn’t be able to

see anything worthwhile if it was included, as seen from the following plot:

1.2x10°

1x10°

8x108

6x108

4x108

2x108

o(1) ——
O(n)
O(n-log(n))
0(n2)
o(2M

Figure 34: How O(2") overpowers lower complexities

30

[This section is a work in progress and it will be completed as soon as possible]

4.10 Simplifying your conditionals with Karnaugh Maps

Karnaugh maps are a useful tool to simplify boolean algebra expressions, as well as identifying and potentially solving

race conditions.

The output of a Karnaugh Map will always be an “OR of ANDs”.

4 SOME COMPUTER SCIENCE FUNDAMENTALS

79

2D Game Development: From Zero To Hero

The best way to explain them is to give an example.

Let’s take the following truth table:

Table 23: The first truth table we’ll simplify with Karnaugh Maps

A B f
0 0 0
0 1 1
1 0 1
1 1 0

Said table can contain any number of variables (we’ll see how to implement those). To be precise, this table repre-

sents the formula A Xor B (XOR means ‘exclusive or’).

Let’s arrange it into a double-entry table, like this (Values of A are on top, values of B are on the left):

A
0 1
BOOl
1|1 O

Figure 35: Karnaugh Map for A XOR B

Now we have to identify the biggest squares or rectangles that contain 2" elements equal to 1 so that we can cover
all the “1” values we have (they can overlap). In this case we’re unlucky as we have only two small rectangles that

contain one element each:

A
0o 1
B001
1 0

Figure 36: Karnaugh Map where the elements of the two “rectangles” have been marked green and red

In this case, we have the result we want with the following formula: f = (A A B) V (A A B)

Not an improvement at all, but that’'s because the example is a really simple one.

4.10.1 “Don’t care”s

Karnaugh Maps show more usefulness when we have the so-called “don’t care”s, situations where we don’t care

(wow!) about the result. Here’s an example.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 80

2D Game Development: From Zero To Hero

Table 24: Truth table with a “don’t care” value

A B f
o o O
0o 1 1
1 0 1
1 1 =x

Putting this truth table into a Karnaugh map we get something a bit more interesting:

A

0
0| O
B
1|1 x

Figure 37: Karnaugh Map with a “don’t care” value

Now we have a value that behaves a bit like a “wild card”, that means we can pretend it's either a 0 or 1, depending

on the situation. In this example we’ll pretend it's a 1, because it’s the value that will give us the biggest “rectangles”.

A
0 1
0|0 1
B
1|1 1

Figure 38: Karnaugh Map where we pretend the “don’t care” value is equal to 1

Now we can find two two-elements rectangles in this map.

The first is the following one:

A
0o 1
0|0 1
B
1|1 1

Figure 39: First Rectangle in the Karnaugh map

In this case, we can see that the result is 1 when B = 1, no matter the value of A. We'll keep this in mind.

The second rectangle is:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 81

2D Game Development: From Zero To Hero

A

o
B 0|0 1
1|1 1

Figure 40: Second Rectangle in the Karnaugh map

In this case, we can see that the result is 1 when A = 1, no matter the value of B.

This translates into a formula of: f = (A) V (B), considering that we don't care about the result that comes out

when A =1and B = 1.

If instead of 1, we ended up choosing 0 for our “don’t care”, we would have obtained
f = (AAB)V (AN B) (the extended form of A XOR B, which we saw earlier). For

our needs, this would have been a good solution too.

4.10.2 A more complex map

When we have more variables, like the following truth table:

A B C D f
0 0 0 0 O
0 0 0 1 0
00 1 0 0
00 1 1 0
01 0 0 0
01 0 1 0
01 1 0 1
01 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1

—_
i
o
o

—_ = =

4 SOME COMPUTER SCIENCE FUNDAMENTALS 82

2D Game Development: From Zero To Hero

Now we’ll have to group up our variables and put them in a Karnaugh Map using Gray Code, practically each row or

column differs from the adjacent ones by only one bit.

The resulting Karnaugh map is the following (AB on columns, CD on rows):

AB
00 01 11 10
00 0 0 1 1
01 0 0 1 1
b 11 0 0 X 1
10 0 1 1 1

Figure 41: A more complex Karnaugh map

We can see two rectangles that contain 2" items, one with 2 items, the other with 8, considering the only “don’t

care” value as 1.

AB
00 01 11 10
00 0 0 1 1
cD 0l 0 0 1 1
11 0 0 X 1
10 0 1 1 1

Figure 42: First rectangle of the more complex Karnaugh map

In this first rectangle, we can see that the values of C and D don’t matter towards the result, as well as the value of

B. The only variable that gives the result on this rectangle is A = 1. We’'ll keep that in mind

Let’s see the second rectangle:

AB
00 01 11 10
00 0 0 1 1
0l 0 0 1 1
b 11 0 0 X 1
10 0 1

Figure 43: Second rectangle of the more complex Karnaugh map

In this case A doesn’t give any contribution to the result, but at the same timeweneed B=1,C =1and D =0

to get the wanted result.
D = 0 translates into D = 1, which brings the formula to: f = AV (B A C A D).

If we didn’t have that “don’t care” value, everything would have been more complex.

4.10.3 Guided Exercise

Let’'s remove the “don’t care” value and have the following truth table:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 83

2D Game Development: From Zero To Hero

0o 0o o o O
0 0 0 1 O
0o 0 1 o0 O
0o 0 1 1 O
0 1. o o0 O
0 1 0 1 O

0 1.1 1 O
1 0 0 o0 1
1 0 0o 1 1

Let’s put it into a Karnaugh Map:

AB
00 01 11 10
00 0 0 1 1
01 0 0 1 1
b 11 0 0 0 1
10 0 1 1 1

Figure 44: Guided Exercise: Karnaugh Map (1/4)

Find the biggest rectangles:

AB
00 01 11 10
00 0 0 1 1
cb 01 0 0 1 1
11 0 0 0 1
10 0 1 1 1

Figure 45: Guided Exercise: Karnaugh Map (2/4)

4 SOME COMPUTER SCIENCE FUNDAMENTALS

2D Game Development: From Zero To Hero

AB
00 01 11 10
00 0 0
0l 0 0
b 11 0 0 0 1
10 0 1 1 1

Figure 46: Guided Exercise: Karnaugh Map (3/4)

AB
00 01 11 10
00 0 0 1 1
cb 01 0 0 1 1
11 0 0 0 1
10 0 1 1 1

Figure 47: Guided Exercise: Karnaugh Map (4/4)

Extract the result: f = (AAC)V (AAB)V (BAC A D)

4.11 Object Oriented Programming
4.11.1 Introduction

One of the biggest programming paradigms in use is surely the “Object Oriented Programming” (from now on:
“0.0.P.") paradigm. The fundamental unit of a program, in this paradigm is the Object. This paradigm allows to
structure your code in a more modular and re-usable way, as well as implementing abstractions, allowing for more
solid code and making it possible for other code to make use of your own code without needing to know any details

besides its Interface.

4.11.2 Objects

Objects are the fundamental unit in O.0.P., objects are essentially a collection of data and functions. Objects are

actually the physical instantiation of what is called a “Class”.
To simplify the concept: a “Class” is a house blueprint, an “Object” is the house itself.
Objects contain data and functions, for the sake of precision, we will use their technical names:

* Functions that are part of an object are called methods and they can be classified as:
- Instance Methods when they act on a single object instance;
- Static Methods when they don’t (usually they’re utility functions), that also means that these methods
belong to the Class itself and not to its instance.
» Each piece of data contained in the class is called a Field and they can be classified as:
- Instance Fields when they're part of the instance and can change from instance to instance;
- Static Fields when they’re part of the class but don’t change between instances (Caution: it does not

mean they cannot change, in that case the change will snowball into all the instances).

4 SOME COMPUTER SCIENCE FUNDAMENTALS 85

2D Game Development: From Zero To Hero

4.11.3 Abstraction and Interfaces

Abstraction is a fundamental point in O.0.P., and it is usually taken care of via so-called Interfaces.

Interfaces are the front-end that an object offers to other objects so they can interact.

As an example: the interface to your PC is given by Keyboard, Mouse and Screen - you don’t need to know how
the single electron travels through the circuits to be able to use a computer; same goes for a class that offers a

well-abstracted interface.

Being able to abstract a concept, removing the necessity to know the internal workings of the code that is used,
is fundamental to be able to write solid and maintainable code, because implementations change, but interfaces

rarely do.

Making classes work together with interfaces allows you to modify and optimize your code without having each edit
snowball into a flurry of compiler (or interpreter) errors. For instance: a rectangle class exposes in its interface a
method getArea() - you don’t need to know how to calculate the area, you just call that method and know it will return

the area of the rectangle.

The concept of keeping the internal workings of a class is called Information Hiding.

4.11.4 Inheritance and Polymorphism

One of the biggest aspects of O.0.P. is inheritance: you can create other classes based on a so-called “base class”,

allowing for extensibility of your software.

You can create a “Person” class, with a name, surname and age as fields, and by inheriting from the “Person” class

you can create a “Student” class, which has all the fields from Person, plus the “clubs” and “grade” fields.

This allows to create a “tree of classes” that represents part of your software.

From inheritance, O.0.P. presents a concept called Polymorphism (From “Poly” - Many, “Morph” - Shape), where

you can use the base class to represent the entire class tree, allowing for substitution.

In our “Person-Student” example, you could use a pointer to either a Person or a Student for the sake of getting their

first name.

In some languages it is possible for an object to inherit from multiple other objects, this is called “Multiple Inheritance

4.11.5 Mixins

Mixins are classes that contain certain methods that are made to be used by other classes. We can see mixins as

some kind of interface with methods already implemented.

Mixins encourage the reuse of code (since the common functionalities get separated into their own classes), allowing

for some interesting mechanisms and enforcing the Dependency Inversion principle.

Many times, Mixins are described as “included” rather than “inherited”, due to their nature.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 86

2D Game Development: From Zero To Hero

Random Trivia!

The python web framework Django makes heavy use of mixins in its class-based views:
you can create a standard “View"” (representing a web page, forinstance), and then add
login protection (via LoginRequiredMixin) or permissions (via PermissionRequiredMixin).

This is all done using Python’s multiple inheritance.

A code example of mixins is beyond the scope of this book, since each language has its own way of implementing
mixins, some easy (like Python), other a bit more complex (like C++, see “Curiously Recurring Template Patterns”,

or C.R.T.R.).

4.11.6 The Diamond Problem

Usually when you call a method that is not present in the object itself, the program will look through the object’s
parents for the method to execute. This usually works well when there is no ambiguity. What if there is ambiguity

instead?

When multiple inheritance is involved, there is a serious possibility of a situation similar to the following

©A

© doStuff()

©c ©s

© doStuff() © doStuff()

1%

Figure 48: Example of a diamond problem

In this example, class A implements a method dostuff() that is overrode by both classes B and C (which inherit from

A): now class D inherits from both B and C but does not override dostuff(), which one will be chosen?

This is the reason many languages do not implement multiple inheritance between classes (like Java, which allows
multiple inheritance only between interfaces), other implement the so-called “virtual inheritance” (C++) and others

again use an ordered list to solve the problem (Python).

This is not something you usually need to worry about, but you may want to be careful when you structure your

classes to avoid “diamond problems”, so to avoid headaches.

4.11.7 Composition

As opposed to inheritance’s “IS-A” relationship, composition makes use of a “HAS-A" type of relationship.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 87

2D Game Development: From Zero To Hero

Composition allows to define objects by declaring which properties they have: a player character can be a sprite

with a “Movable” component, or a box could have a “RigidBody” component.

This way we can create new objects by reusing basic components, making maintenance easier as well as saving

lines of code, avoiding “the diamond problem” and reducing coupling.

4.11.8 Composition vs. Inheritance

Let’s be clear right from the get go: there is no “silver bullet” here. Composition and inheritance target different
problems (IS-A vs. HAS-A relationships). Inheritance binds classes closely, while composition tends to induce less

coupling (we'll talk about coupling in a second).

Let’'s make an example of inheritance: we have a “Shape” base class, from where we create two new classes:
Rectangle and Circle. For the purposes of our usage (which will be getting perimeter and area), Rectangle IS-A

Shape, as well as Circle IS-A Shape.

Listing 20: An example of inheritance: Shapes

1 abstract class Shape{

2 /%

3 * An abstract shape class

4 */

5 // Abstract functions that will be overridden by subclasses
6 abstract function area() -> float;

7 abstract function perimeter() -> float;

8 3

° 3

10

11 class Rectangle inherits from Shape{

12 // A simple rectangle class

13 float width;

14 float height;

15

16 constructor(float w, float h){

17 this.width = w;

18 this.height = h;

19 3

20

21 function area() -> float{

22 // Returns the Area of the rectangle
23 return this.width * this.height;

2 3

25

26 function perimeter() -> float{

27 // Returns the Perimeter of the rectangle
28 return 2 * (this.width + this.height);
29 }

30 }

31

32 class Circle inherits from Shape{

4 SOME COMPUTER SCIENCE FUNDAMENTALS 88

2D Game Development: From Zero To Hero

33 // A simple circle class

34 float radius;

35

36 constructor(float r){

37 this.radius = r;

38 3

39

40 function area() -> float{

a1 // Returns the Area of the circle

42 return 3.1415 * 3.1415 * this.radius;
a3 3

44

45 function perimeter() -> float{

46 // Returns the circumference of the circle
47 return 2 * 3.1415 * this.radius;

a8 3

a9 }

Let’s continue with another example: we have a Coffee machine, such coffee machine HAS-A grinder, as well as
brewing unit. We can express such relationships with composition and build our coffee machine from our compo-

nents.

Listing 21: An example of inheritance: A coffee machine

1 class Grinder{

2 // A simple coffee grinder component
3 function grind(){

4 // Pretend to grind some coffee
5 print("Grinding coffee");

6 3

7}

9 class BrewingUnit{

10 // A simple brewing unit component
1 function brew(){

12 // Pretend to brew a good coffee
13 print("Brewing your coffee");

14 3

15}

16

17 class CoffeeMachine{

18 // A simple coffee machine, has a grinder and a brewing unit

19 Grinder grinder = new Grinder();

20 BrewingUnit brewer = new BrewingUnit();

21

22 function make_coffee(){

23 // Uses the brewing component and the grinder to make some fresh coffee
24 this.grinder.grind();

25 this.brewer.brew();

26 print("Here's your fresh coffeel!");

4 SOME COMPUTER SCIENCE FUNDAMENTALS 89

2D Game Development: From Zero To Hero

27 3

4.11.9 “Composition over Inheritance” design

Often cited in programming, the “composition over inheritance” design states that code reuse and polymorphism
should be achieved using composition as the preferred method, while leaving subclassing (inheritance) alone as

much as possible.

This allows for easier code reuse, as well as more flexibility and less coupling. Let’'s make a simple example.

If you’'re having trouble understanding the diagrams that follow, head to the Reading

UML Diagrams section for a full explanation on UML.

Let’s imagine a physical object that can be Visible/Invisible, Solid/NonSolid and Movable/Immovable. In UML, an

inheritance hierarchy would look something like this:

(© object

© input();

© update(dt);
© draw();

© collide();

[@v\sinleom‘ect [@mvumlaomw‘ [@cmlidanleomect‘ [@Noncmndab\eomea‘ ‘©Movable0bjecl‘ ©Immovab\e0bjec(‘
| | | | | | |

[® draw; | (o araw:] [° colligeqy; |

[colideq; | [° updates;] [° updates; |

Figure 49: How an object may look using inheritance

If we think of some objects, like a playable character, or a building, things get a lot more complicated: a playable

character is movable, solid and visible, while the building is not movable. Things can get ugly really fast.

(© Object

© input(;

© update(dt);
© draw();

© collide();

(© NonCollidableObject ‘
| |
© draw();] [° colligeq;]

| | |
Sdaw) | | colidel; | [cupdaer: |

I

© update(); i i

(©)visibleobj " [@cmndableomect‘ ‘©Movable0bjecl‘ ‘@Invis\b\eﬁb}ect‘
I I | |
l l l

[@Bundmg‘ [@ PlayableCharacter ‘
| | |
¢ J

t]

Figure 50: How inheritance can get complicated quickly

This can lead to confusion, as well as the diamond problem.

Using composition, we can separate the behaviours into the “Visible”, “Updatable” and “Movable” components and

then use those as “reusable puzzle pieces” for our objects.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 90

2D Game Development: From Zero To Hero

Implementations \
(©1mmovableobject (© MovableObject (© mvisibleobject (©)visibleobject (© NoncoliidableObject (© collidableobject
© update(); © update(); © draw(); © draw(); @ collide(); @ collide();
~ < N " ~ —
< 5 N / , -
Sel nterfaces \ L N4 B -
~o 4—F .-
N@ updataie| |@visive| @) coticavre|] -
© update(); © draw(); © collide();
* 7 A3 A
T DS A—— T
! AP AN !
Objects \ I e S |
© PlayableCharacter © Building
a e 5 o
The fields will contain the following instances: . "‘SI‘II_"ec“’mpmem' V'f'b‘e‘i. o 5 "‘SI‘II."e(?mpmem' V'f'b‘e‘i, o The fields will contain the following instances:
visiblecomponent: VisibleObject Ll collidabl ecompcnen.l. Collidabl e., - collidabl ecompcnen.l. Collidable; |- visiblec VisibleObject
 collidablecomponent: CollidableObject movablecomponent: Updatable; movablecomponent: U ; collidablecomponent: CollidableObject
- movablecomponent: MovableObject © update(; © update(; - movablecomponent: ImmovableObject
© draw(); © draw();
© collide(); © collide();

Figure 51: How components make things a bit simpler

4.11.10 Coupling

Coupling is a term used to define the phenomenon where an edit to some part of a software snowballs into a bunch

of edits in parts of the software that depend on the modified part, and the part that depend on the previously edited

dependency, etc...

The parts involved are defined as “coupled” because, even though they are separated, their maintenance very much
behaves like they were a single entity. This also means that the elements that are coupled are harder to reuse, since

they are so tightly related that they end up serving each other and nothing else.

Introducing unnecessary coupling in our software will come back to bite us in the future, affecting maintainability in
a very negative way, since any edit we make (for instance, to fix a bug) can potentially lead to the need to edit the

rest of the software (or game) we are writing.

Reducing coupling is done by reducing interdependence, coordination and information flow between elements of a

program.
Examples of coupling include:

* A module uses code of another module (this breaks the principle of information hiding,g;);
* Many modules access the same global data;

A module controls the flow of another module (like passing a parameter that decides “what to do”);

* Subclassing.

This means that it’s in our best interest to reduce code coupling as much as possible, following the good principles

of “nutshell programming” and following the SOLID principles, shown next.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 91

2D Game Development: From Zero To Hero

We may be tempted to try and “remove coupling completely”, but that's usually a
wasted effort. We want to reduce coupling as much as possible and instead improve
“cohesion”. Sometimes coupling is unavoidable (as in case of subclassing). Balance is

the key.

4.11.11 The DRY Principle

DRY is a mnemonic acronym that stands for “Don’t Repeat Yourself” and condenses in itself the principle of reducing

repetition inside a software, replacing it with abstractions and by normalizing data.

This allows for each piece of code (and knowledge, since the DRY principle applies to documentation too) to be

unambiguous, centralizing its responsibilities and avoiding repetition.

Violations of the DRY principle are called “WET” (Write Everything Twice) solutions, which base themselves on

repetition and give higher chances of mistakes and inconsistency.

4.11.12 SOLID Principles

SOLID is a mnemonic acronym that condenses five principles of good design, to make code and software that is

understandable, flexible and maintainable.

* Single Responsibility: Each class should have a single responsibility, it should take care of one part of
the software specification and each change to said specification should affect only said class. This means
you should avoid the so-called “God Classes”, classes that take care of too much, know too much about the
system and in a nutshell: have too much responsibility in your software.

* Open-closed Principle: Each software entity should be open to extension, but closed for modification. This
means that each class (for instance) should be extensible, either via inheritance or composition, but it should
not be possible to modify the class’s code. This is practically enforcing Information Hiding.

¢ Liskov Substitution Principle: Objects in a program should be replaceable with instances of their subtypes
and the correctness of the program should not be affected. This is the base of inheritance and polimorphism,
if by substituting a base class with one of its children (which should have a Child-is-a-Base relationship, for
instance “Circle is a shape”) the program is not correct anymore, either something is wrong with the program,
or the classes should not be in a “IS-A” relationship.

* Interface Segregation: Classes should provide many specific interfaces instead of one general-purpose
interface, this means that no client should depend on methods that it doesn’t use. This makes the software
easier to refactor and maintain, and reduces coupling.

* Dependency Inversion: Software components should depend on abstractions and not concretions. This is
another staple of nutshell programming and O.0.P. - Each class should make use of some other class’s interface,
not its inner workings. This allows for maintainability and easier update and change of code, without having

the changes snowball into an Armageddon of errors.

[This section is a work in progress and it will be completed as soon as possible]

4 SOME COMPUTER SCIENCE FUNDAMENTALS 92

2D Game Development: From Zero To Hero

4.12 Designing entities as data

Sometimes it can be useful to design your entities as data, instead of making them into static objects that possibly

require a new release of your product.

Designing your objects as data allows you to use configuration files to create, configure, tinker and extend your

product, as well as allow for modifications by people who are fans of your game.
For instance, in a fantasy RPG you could have 3 types of enemies all defined as classes:

e Skeleton
¢ Zombie

* Ghost Swordsman
Which all have the same behavior but different animations and sprites.

These classes can inherit from an “entity” abstract class which defines the base behavior and then can be extended

to create each unique enemy.

Another idea could be designing an “entity” class that can be instantiated, and have a configuration file that defines

what each entity is and what its properties are.

An idea could be the following, using YAML:

Listing 22: Example of an entity declared as YAML data

1 entity:

2 name: skeleton

3 health: 10

4 damage_on_hit: 2.5

5 spritesheet: "./skelly.png"

6 animations:

7 walking:

8 start_sprite: 4
9 frame_no: 4

10 duration: 0.2

1 attacking:

12 start_sprite: 9
13 frame_no: 2

14 duration: 0.1

Another often used alternative is JSON, which would look like this:

Listing 23: Example of an entity declared as JSON data

1 {

2 "entity": {

3 "name": "skeleton",

4 "health": 10,

5 "damage_on_hit": 2.5,

4 SOME COMPUTER SCIENCE FUNDAMENTALS 93

2D Game Development: From Zero To Hero

6 "spritesheet": "./skelly.png",
7 "animations":{

8 "walking":{

9 "start_sprite": 4,
10 "frame_no": 4,

1 "duration": 0.2

12 1,

13 "attacking":{

14 "start_sprite": 9,
15 "frame_no": 2,

16 "duration": 0.1

17 }

18 }

19 }

20 }

With more complex building algorithms, it is possible to change behaviors and much more with just a configuration
file, and this gives itself well to rogue-like games, which random selection of enemies can benefit from an extension
of the enemy pool. In fact, it’s really easy to configure a new type of enemy and have it work inside the game without

recompiling anything.

This allows for more readable code and a higher extensibility.

4.13 Reading UML diagrams

UML (Universal Modeling Language) is a set of graphical tools that allow a team to better organize and plan a software
product. Diagrams are drawn in such a way to give the reader an overall assessment of the situation described while

being easy to read and understand.
In this chapter we will take a look at 4 diagrams used in UML:

* Use Case Diagrams
* Class Diagrams
e Activity Diagrams

¢ Sequence Diagrams

4.13.1 Use Case Diagrams

Use Case Diagrams are usually used in software engineering to gather requirements for the software that will come
to exist. In the world of game development, use case diagrams can prove useful to have an “outside view” of our

game, and understand how an user can interact with our game.

Here is an example of a use case diagram for a game:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 94

2D Game Development: From Zero To Hero

GameMenu

Start The Game Remember to clear the menu stack!ﬁ
% Open the Options Menu

Player Open the Credits Screen
Exit to Desktop

Figure 52: Example of a use case diagram

4.13.1.1 Actors

Actors are any entity that can interface with our system (in this case, our game) without being part of it. Actors can

both be human, machines or even other systems.

Actors are represented with a stick figure and can inherit from each other: this will create an “IS-A" relationship

X

Ultimate User

between actors.

X

Free User Power User

Authenticated User

Figure 53: Example of an actor hierarchy

In the previous example, we can see that a “Free User” is an “Authenticated User”, as well as a “Power User” (which
could be a paying user) is itself an “Authenticated User” while an “Ultimate User” (which could be a higher tier
of paying user) is a “Power User” (thus has all the “Power User” capabilities, plus some unique) and by transitive

property an “Authenticated User”.

As seen, inheritance between actors is represented with a solid line with a hollow closed arrow. Such arrow points

towards the “super-type” or “parent” from which the subject (or “sub-type”, or “child”) inherits.

This representation will come back in the UML language for other diagrams too.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 95

2D Game Development: From Zero To Hero

4.13.1.2 Use Cases
Use cases represent the functionalities that our system offers, and the relationships between them.

Use cases are represented with an ellipse with the name of the use case inside. Choosing the right name for a use

case is extremely important, since they will represent the functionality that will be developed in our game.

Start The Game

Figure 54: Example of a use case

4.13.1.2.1 Inheritance

As with many other elements used in UML, use cases can inherit from each other. Inheritance (also called “General-

ization”) is represented with a closed hollow arrow that points towards the parent use case.

X

Player

Website

Search By Name

Search By Category
Search By Tag

Figure 55: Example of a use case hierarchy

4.13.1.2.2 Extensions

Use case extensions specify how and when optional behavior takes place. Extended use cases are meaningful
on their own and are independent from the extending use case, while the extending use case define the optional

behavior that may not have much sense by itself.

Extensions are represented via a dashed line with an open arrow on the end, labeled with the <<extend>> keyword,

pointing towards the extending use case.

System

@ - cextend>__ Help on Login

User

Figure 56: Example of a use case extension

4 SOME COMPUTER SCIENCE FUNDAMENTALS 96

2D Game Development: From Zero To Hero

4.13.1.2.3 Inclusions

Inclusions specify how the behavior of the included use case is inserted in the behavior of the including use case.
Inclusions are usually used to simplify large use cases by splitting them or extract common behaviors of two or more

use cases.
In this situation, the including use case is not complete by itself.

Inclusions are represented via a dashed line with an open arrow on the end, labeled with the <<include>> pointing

X

User

towards the included use case.

System
«include» __ _

Customer Authentication .
— _«include»

Withdraw

Figure 57: Example of a use case inclusion

4.13.1.3 Notes

In use case diagrams, as well as in many other UML diagrams, notes are used to jot down conditions, comments and
everything useful to better understanding the diagram that cannot be conveyed through a well definite structure

inside of UML.

Notes are shaped like a sheet of paper with a folded corner and are usually connected to the diagram with a dashed

line. Each note can be connected to more than one piece of the diagram.

You can see a note at the beginning of this chapter, in the use case diagram explanation.

4.13.1.4 Sub-Use Cases

Use cases can be further detailed by creating sub-use cases, like the following example.

% Checkout

Customer «extends» _ _ —
m — _ «include»

Clerk

Figure 58: Example of a sub-use case

4.13.2 Class Diagrams

4.13.2.1 Classes

4 SOME COMPUTER SCIENCE FUNDAMENTALS 97

2D Game Development: From Zero To Hero

Class diagrams are used a step after analyzing your game, since they are used for planning classes. The central

element of a class diagram is the “class”, which is represented as follows:

@ ClassName

H privateVariableType privateVariable

@ AbstractClassName

© publicMethodName()
© protectedMethodName() © publicAbstractMethodName()
¥ privateMethodName()

© publicStaticMethod()

Figure 59: Example of classes in UML

Classes are made up by a class name, which is shown on top of the class; abstract classes are shown with a name

in italics.

Public members are highlighted by a “+” symbol (or in our case, a green symbol) before their name, protected

members use a “#"” symbol (or a yellow symbol) and private members use a “-” symbol.

Static members are shown with an underlined name, while abstract members are shown in italics.

4.13.2.2 Interfaces

Sometimes there is a need to convey the concept of “interface” inside a UML class diagram, that can easily be done

in 2 ways:

* By using the class construct, with the keyword (called “stereotype”) <<interface>> written on top of it;

* By using the “lollipop notation” (also called “interface realization”).
@ «interface»
SearchInterface

—

@ SearchProvider

Figure 60: Defining an interface in UML

Searchlﬁterface

© SearchProvider

Figure 61: Interface Realization in UML

4.13.2.3 Relationships between entities of the class diagram

Expressing only single classes on their own doesn’t give UML a lot of expressive power when it comes to planning

your games. Here we’ll take a quick look at the most used relationships between classes.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 98

2D Game Development: From Zero To Hero

A

Generalization/ Interface
Inheritance Realization

A

Association Dependency Aggregation Composition

Figure 62: Relationships between classes in an UML Diagram

4.13.2.3.1 Inheritance

Inheritance is represented via a hollow closed arrow head that points towards the base class (exactly like in Actor

inheritance), this means that the classes are in a “super-type and sub-type” relationship.

Figure 63: Example

In this example we say that “Student IS-A Person” and inherits all Person’s methods and fields.

4.13.2.3.2 Interface realization

Interface realization can be complex to understa

The interface realization relationship specifies that the realizing class must conform to the contract that the

provided interface specifies.

@ Person

O name: string
O age:int

@ Student

© grades: list

© getGPA()

of inheritance in UML class diagrams

nd at first, given its formal definition:

In short, it means that the class is implementing all the methods specified by the interface (thus “realizing” it, as in

making it real).

® Interface

implemented, since the interface is

© doStuff()

"a contract” over what the class shall do.

The "doStuff()" method is obligatorily 7

@ ConcreteClass

N
N
\

Figure 64: Example of i

4.13.2.3.3 Association

© doStuff()

nterface realization in UML class diagram

4 SOME COMPUTER SCIENCE FUNDAMENTALS

99

2D Game Development: From Zero To Hero

Association represents a static relationship between two classes. This is usually represented with a solid line with
an arrow. The arrow usually shows the reading order of the association, so if you see an “Author” class and a “Book”

class, the “wrote” association will be pointing from the “Author” to the “Book” class.

In case the relationship is bi-directional, the arrow points are omitted, leaving only a solid line between the two

classes.

@ Person

© name: string
O age: int

0..4

subscriber

0..%

@M gazine

O title: string

Figure 65: Example of association in UML class diagrams

An example of an association is the relationship between a “Person” and a “Magazine”, such relationship is the
“Subscription”. In this case the relationship is bi-directional, since a “Magazine” can be subscribed by many people,

but a single “Person” can subscribe to many “Magazine”s.

4.13.2.3.4 Aggregation and Composition

Aggregation is a special case of the association relationship, and represents a more specific case of it. Aggregation

is a variant of a “has-a” relationship and represents a part-whole relationship.

Aggregation is represented with a hollow diamond and a line that points to the contained class, classes involved in
an aggregation relationships do not have their life cycles dependent one another, that means that if the container
is destroyed, the contained objects will keep on living. An example could be a teacher and their students, if the

teacher dies the students will keep on living.

© Teacher © University

© name: string

© name: string

© age: int
Student . .
© @ UniversityDepartment
© name: string © e S
© age: int

Figure 66: Example of aggregation and composition in UML class diagrams

Composition is represented with a filled diamond instead than a hollow one, in this case there is a life cycle de-

pendency, so when the container is destroyed the contents are destroyed too. Like when a university is dissolved,

4 SOME COMPUTER SCIENCE FUNDAMENTALS 100

2D Game Development: From Zero To Hero

its departments will cease to exist. Conversely, a teacher may have some students under their wing, but when a
teacher remains without students they won’t magically disappear: the teacher’s life cycle is independent from their

students’.

4.13.2.3.5 Dependency

The dependency relationship is the one that gives us the least amount of coupling, it represents a “supplier-client”
relationships, where the supplier supplies its functions (methods) to the client. The association is represented in a

dashed line with an open arrow that points towards the supplier.
This means that the client class requires, needs or depends on the supplier.

There are many categories of dependency, like <<create> or <<call>> that explain further the type of dependency

exists between the supplier and the client.

An example could be between a “Car Factory” and a class “Car”: the “CarFactory” class depends on the “Car” class,

and such dependency is an instantiation dependency.

@CarFactory

v
@Car

Figure 67: Example of dependency in UML class diagrams

4.13.2.4 Notes

As with Use Case diagrams, class diagrams can make use of notes too, and the graphical language used to represent

them is exactly the same one used in the Use Case Diagrams.

4.13.3 Activity Diagrams

Activity diagrams are the more powerful version of flow charts: they represent the flux of an activity in detail, allowing

to have a better understanding of a process or algorithm.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 101

2D Game Development: From Zero To Hero

Take Shopping cart

Take Item

Put Item in Shopping Cart

(Delete Item name from Shopping Iisa

v

More Items in Shopping List?

yes

no

Y

Go to checkout

Figure 68: Example of an activity diagram

4.13.3.1 Start and End Nodes

Each diagram begins what a “start node”, represented with a filled black circle, and they end with an “end node”

which is represented with a filled black circle inside of a hollow circle.

Figure 69: Example of activity diagrams start and end nodes

4.13.3.2 Actions

Each action taken by the software is represented in the diagram via a rounded rectangle, a very short description of

the action is written inside the rounded rectangle space.

Y

[Delete Item name from Shopping list

v

Figure 70: Example of Action in activity diagrams

4.13.3.3 Decisions (Conditionals) and loops

4 SOME COMPUTER SCIENCE FUNDAMENTALS 102

2D Game Development: From Zero To Hero

Decisions and loops are enclosed in diamonds. If a condition needs to be written, the diamond can become an

hexagon, to make space for the condition to be written or guards can be used to express the condition.

Get Input number

number bigger than 0

Double the number

Triple the number

>. <
> <

Figure 71: Example of decision, using hexagons to represent the condition

b

[Create random number between 0 and 1@

Get input

[Compare with number)

[Right number]

You won

A

Figure 72: Example of loops, using guards to represent the condition

All the branches that depend on a condition start on the condition itself and end on a diamond, as shown below.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 103

2D Game Development: From Zero To Hero

There are more rows in table

A
There are more cells in the row <€

/

A
[Double the cell vaIue} (Triple the cell vaIue}

Write cell value to console

Figure 73: Example of how nested loops and conditions are performed

Sometimes loops can make use of empty diamonds (called “merges”) to make the

diagram clearer.

4.13.3.4 Synchronization

Synchronization (or parallel processing) is represented in activity diagrams by using filled black bars that enclose

the concurrent processes: the bars are called “synchronization points” or “forks” and “joins”

Take Order

¥ ¥
[Send Order confirmation} (Process Order)
¥ ¥

®

Figure 74: Example of concurrent processes in activity diagrams

In the previous example, the activities “Send Order Confirmation” and “Process Order” are processed in parallel,
independently from each other, the first activity that finishes will wait until the other activity finishes before entering

the end node.

4.13.3.5 Swimlanes

Swimlanes are a way to organize and group related activities in columns. For instance a shopping activity diagram

4 SOME COMPUTER SCIENCE FUNDAMENTALS 104

2D Game Development: From Zero To Hero

can have the “Customer”, “Order”, “Accounting” and “Shipping” swimlanes, each of which contains activities related

to their own categories.

Customer Order Accounting Shipping

Place Order

Take Order

Receive Confirmation Packaging

Record Shipping

Receive Order

Pay Bill

Close Order

®

Figure 75: Example of swimlanes in activity diagrams

4.13.3.6 Signals

Signals are used to represent how activities can be influenced or modified from outside the system. There are two

symbols used to represent signals.

The “Sent Signal” symbol is represented with a convex pentagon (which reminds an arrow going away from our

system), while the “Received Signal” is represented by a concave pentagon (which reminds a “slot” where the “sent

signal” symbol can connect to).

4 SOME COMPUTER SCIENCE FUNDAMENTALS 105

2D Game Development: From Zero To Hero

Customer Store

Search product

Put product in basket

Place Order

Accept Order

Take products from store

Deliver Products

Deliverer rings

Confirm Receipt

Figure 76: Example of signals in activity diagrams

4.13.3.7 Notes

As with Use Case and Class diagrams, Activity Diagrams can make use of notes, in the same way as the other two

diagrams we presented in this book do.

Take Shopping cart Make sure the shopping cart works Wellﬁ

Take Item

Put Item in Shopping Cart

[Delete Item name from Shopping Iist)

More Items in Shopping List? >&

no

Go to checkout

Figure 77: Example of a note inside of an activity diagram

4.13.3.8 A note on activity diagrams

4 SOME COMPUTER SCIENCE FUNDAMENTALS 106

2D Game Development: From Zero To Hero

The components of activity diagrams shown here are just a small part of the used components, but they should be

enough to get you started designing and reading most of the activity diagrams that exist.

4.13.4 Sequence Diagrams

Sequence diagrams are used to represents how objects (called “participants”) interact with each other and such

interactions are represented in a time sequence.

4.13.4.1 Lifelines

The central concept of sequence diagrams are lifelines: the represent the time a participant is “alive” and when it

is doing something.

| WebServer

Request !

| WebServer

Figure 78: Example of a sequence diagram lifeline

The time flows from top to bottom, a dashed line represents the participant exists (for instance an object is instan-
tiated in memory), while the rectangle that replaces the dotted line represents the participant being “active” (for

instance one of the object’s functions is called).

4.13.4.1.1 Participants

The participants don’t have to be actual classes, since sequence diagrams represent interactions at a “higher level”

than mere code-bound planning.

Some UML drawing software allows for custom shapes for each participant, like the following:

4 SOME COMPUTER SCIENCE FUNDAMENTALS 107

2D Game Development: From Zero To Hero

Actor Generic_Participant W) Database Collection I
| T ") :
L |

>
>

R

DR -
oo |
I

| ! ‘
Actor Generic_Participant M Daéase CoIIectionI

Figure 79: Some alternative shapes for participants

4.13.4.2 Messages
Each object (represented by a lifeline) communicates with other objects (and the “outside”) through “messages”.

Messages are represented by arrows and an example can be seen here:

T T T

I
Found Message_ '
o 9.

Synchronous Message,

Asynchronous Message

Self-message

! Lost Message
— = >
! o

Figure 80: Messages in a sequence diagram

I
I
|
|
i
Return !
I
I
I
I

Let’'s analyze them one by one:

* Found Messages are messages that come from “outside”, from the perspective of the part of the system we
are analyzing, they may come from another system or even the user.

* Synchronous Messages and returns are messages that activate a class and wait for a “return message”.
These usually represent a synchronous function call (but it can represent a more abstract concept).

* Asynchronous Messages are messages that activate a class but don’t wait for a return value. These usually
represent asynchronous functions calls.

* Self-messages are messages from an object to itself, they usually represent an internal function call.

* Lost Messages are messages sent towards the “outside”, from the perspective of the part of the system we

are analyzing.

4.13.4.3 Object Instantiation and Destruction

4 SOME COMPUTER SCIENCE FUNDAMENTALS 108

2D Game Development: From Zero To Hero

Sometimes it may be useful to represent the instantiation and destruction of objects in a sequence diagram. UML

provides such facilities via the <<instantiate>>, <<create>> and <<destroy>> keywords, as well as a symbol for the de-

|
<sinstantiate>> | Class 2 |

struction of an object.

|

|

. doStuff() |
prrereer el >
|

|

|

|

<Y
‘ [
' <<destroy>> !
T X

Figure 81: Object instantiation and destruction in a sequence diagram

4.13.4.4 Grouping and loops

From time to time, we may need to represent a series of messages being sent in parallel, a loop, or just group some
messages to represent them in a clearer manner. This is where grouping comes of use: it has a representation based

on “boxes”, like the following:

Monte_Carlo_Calculator] [Input_Generator

3 compute() |

I
I
I
I
loop J 000 times] :
I
I

generate_input()

User
I

Monte_Carlo_Calculator Input_Generator

Figure 82: A loop grouping in a sequence diagram

4.13.4.5 Notes

4 SOME COMPUTER SCIENCE FUNDAMENTALS 109

2D Game Development: From Zero To Hero

Like all UML diagrams, it is possible to use notes to add some comments that may be useful for the interpretation

of our diagrames, like follows.

Class_1 Class_2

" doStuff()
>

This is a note.%

Class_1 Class_2

Figure 83: Example of notes in a sequence diagram

4.13.5 Other diagrams

UML is composed by a ton of diagrams that can be used to communicate with your teammates and organize your

work, among them we find:

e Component Diagrams;

¢ Communication Diagrams;

e Composite Structure Diagrams;
* Deployment Diagrams;

* Package Diagrams;

* Profile Diagrams;

e State Diagrams;

* Timing Diagrams.

In this chapter we just saw the ones that will help you the most when reading the rest of this book, as well as

effectively planning any project you have in mind.

4.14 Generic Programming

Sometimes it may be necessary (mostly in the case of containers) to have the same kind of code to work on different
data types, which means that we need to abstract types into variables and be able to code accounting for such

types.

Generic Programming is a blanket-term that defines a style of computer programming where algorithms are
written in terms of “to be specified later” data types, this usually applies to languages that make use of static

typingg;.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 110

2D Game Development: From Zero To Hero

4.15 Data Structures

This section is dedicated to give some basic explanation of some advanced containers and data structures that are
used in computer science, allowing us to make an informed choice when we want to implement some even more

advanced containers in the future.

Where possible, we will include big-O performance counters for the basic functions of: adding/removing and item at
the beginning, adding/removing an item at the end, adding/removing an item in an arbitrary position and indexing

at a certain position.

This section is in no way exhaustive, but should be enough to make an informed decision on what containers to use

for our components, according to necessities.

This section will be purely theoretical and many data structures will have no code
blocks, this is because implementations vary wildly between programming languages

and some of these structures are integrated in such languages.

4.15.1 Graphs

A graph is a data structure that contains a set of vertices (or nodes) which may be connected by a set of edges (or

links).

Graphs can be represented in code in two common ways (there are surely other ways to do so): using adjacency

lists or using adjacency matrices.

To explain the two main ways to represent graphs, we will use the following reference image:

Figure 84: Graphical representation of a simple graph

4 SOME COMPUTER SCIENCE FUNDAMENTALS 111

2D Game Development: From Zero To Hero

4.15.1.0.1 Adjacency Lists

Adjacency lists are very simple: they just list the “neighbours” inside a list-like container, every time the graph
gets changed, so will the adjacency lists. This method is really flexible and easy to implement. In fact it can be

represented in a simple table:

Table 27: A simple adjacency list for our reference image

Node Adjacency List

A [B, D]

B [A, C, D]
9 [B]

D [A, B, EI
E [D]

[This section is a work in progress and it will be completed as soon as possible]

4.15.1.0.2 Adjacency Matrices

Another method is to use matrices as a way to store relations between nodes. We have an n X . matrix (where n
is the number of nodes involved) filled with zeros; we put a 1 for every connection that the nodes have (in many

conventions, self-loops use the value 2).

Here is an example:

0 1 0 1 0
10110
0100 0
1100 1
000 1 0

If we label the matrix, things are a little bit easier to read:

Table 28: How to read an adjacency matrix

A B C D E
A 0 1 0 1 0
B 1 0 1 1 0
C 0 1 0 0 0
D 1 1 0 0 1

4 SOME COMPUTER SCIENCE FUNDAMENTALS 112

2D Game Development: From Zero To Hero

For non-directed graphs (like the one in the reference image), adjacency matrices are
mirrored on the main diagonal. This may be useful information if you really want to

squeeze the last bit of space out of your implementation.

Using the table, we can see that we have a 1 in “row A, column B”, which means there is a link “A to B”, since there
isa lin “row B, column A", it means that there is a link “B to A” too. This makes it easy to store single-direction

relationships (for Directed Graphs) in a compact way.

[This section is a work in progress and it will be completed as soon as possible]

4.15.2 Trees

When you are a programmer, sooner or later you will have to deal with trees: they are a data structure that represents

a hierarchy, using a set of nodes.

Trees can be defined as a “recursive data structure”, made up of a node and a bunch of sub-trees connected to it.

Figure 85: Example of a tree structure

The fact that we can define trees recursively also means that they're a good candidate for all kinds of recursive

algorithms, which can help simplifying the code quite a bit.
Trees are the base structure for a lot of other data structures, like heaps and binary search trees.
In this book we will focus mostly on binary trees: trees where each node has at most 2 children.

A possible implementation of a tree could be the following:

Listing 24: A possible implementation of a tree class

1 class Node{

4 SOME COMPUTER SCIENCE FUNDAMENTALS 113

2D Game Development: From Zero To Hero

2 /*

3 * This is an example of a simple node structure for a tree.
4 * It can be used as root or any other node
5 */

6 String content;

7 Node left;

8 Node right;

9

10 constructor(String value){

1 this.content = value;

12 }

13

14
15

16 function build_example_tree(){

17 // Let's build the example tree; starting with the nodes
18 Node A = Node("A");

19 Node B = Node("B");

20 Node C = Node("C");

21 Node D = Node("D");

2 Node E = Node("E");

23 Node F = Node("F");

24 Node G = Node("G");

25 Node H = Node("H");

26 Node I = Node("I");

27 // Now we connect the various components (the edges)
28 B.left = A;

29 B.right = C;

30 F.left = E;

31 D.left = B;

32 D.right = F;

33 H.right = I;

34 G.left = D;

35 G.right = H;

36 // The tree is ready to be used, let's return the root (G)
37 return G;

38 }

4.15.2.1 Depth-first Search

The Depth-first search is a so-called “tree traversal algorithm”, which means that it's essentially a way to explore a
tree structure. In this case, the algorithm will try to reach the nodes farthest from the root first, before “backtracking”

(that means before going “back towards the root”).

As said earlier, we will focus on binary trees.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 114

2D Game Development: From Zero To Hero

Figure 86: Order in which the nodes are visited during DFS

Depth-first search can be useful in the following situations (as well as others):

* Sorting;
* Maze generation (see the Randomized DFS Method in the Maze generation section);

* Maze solving (which may be useful for Path finding);

The DFS algorithm hides some subtleties, though: the algorithm will “traverse” the tree in the same order, but

different implementations will “visit the tree nodes” differently. We will take a look at how nodes are visited now.

In explaining the DFS algorithm, we will refer to the example tree we saw earlier, here it is again:

Figure 87: Example tree that will be traversed by DFS

4.15.2.1.1 Pre-order Traversal

The pre-order traversal visits the current node before visiting its children. That means that the algorithm performs

4 SOME COMPUTER SCIENCE FUNDAMENTALS 115

2D Game Development: From Zero To Hero

the following operations, in order:

1. Visit the current node
2. Recursively traverse the current node’s left subtree

3. Recursively traverse the current node’s right subtree

If we traverse the example tree with pre-order traversal, and print the visited node, the output will be: GDBACFEHI

Here is how an example implementation of a pre-order traversal of a binary tree using DFS would look like:

Listing 25: Pre-order traversal of a tree using DFS

1 function dfs_traverse_preorder(Node n){

2 // Step 1: Visit the node, in this case we print its value
3 print(n.content);

4 // Step 2: We traverse the left subtree, using recursion;
5 if (n.left is not null){

6 dfs_traverse_preorder(n.left);

7 3

8 // Step 3: We traverse the right subtre, using recursion;
9 if (n.right is not null){

10 dfs_traverse_preorder(n.right);

1 3

12}

13

1 function main(){

15 Node root = build_example_tree();
16 dfs_traverse_preorder (root);
17)

4.15.2.1.2 In-order Traversal

The in-order traversal visits the tree “from left to right”, by prioritizing the traversal of the left subtrees before visiting

the current node. That means that the algorithm performs the following operations, in order:

1. Recursively traverse the current node’s left subtree
2. Visit the current node

3. Recursively traverse the current node’s right subtree

If we traverse the example tree with in-order traversal, and print the visited node, the output will be: ABCDEFGHI

Notice how in this case, the output is ordered. This is because the example tree is a special kind of tree, called a

“binary search tree”. We will see more in the dedicated paragraph.

Here is how an example implementation of a in-order traversal of a binary tree using DFS would look like:

Listing 26: In-order traversal of a tree using DFS

1 function dfs_traverse_inorder(Node n){

4 SOME COMPUTER SCIENCE FUNDAMENTALS

2D Game Development: From Zero To Hero

// Step 1: We traverse the

if (n.left is not null){
dfs_traverse_inorder(n.

3

// Step 2: Visit the node,

print(n.content);

// Step 3: We traverse the

if (n.right is not null){

left subtree, using recursion;

left);

in this case we print its value

right subtre, using recursion;

10 dfs_traverse_inorder(n.right);
1 3

12

13

14 function main(){

15 Node root = build_example_tree();

16

17

dfs_traverse_inorder(root);

4.15.2.1.3 Post-order Traversal

The post-order traveral method prioritizes traversing both the children to visiting the current node, thus it will perform

the following operations:

1. Recursively traverse the current node’s left subtree

2. Recursively traverse the current node’s right subtree

3. Visit the current node

If we traverse the example tree with post-order traversal, and print the visited node, the output will be: ACBEFDIHG

Here is how an example implementation of a post-order traversal of a binary tree using DFS would look like:

Listing 27: Post-order traversal of a tree using DFS

1 function dfs_traverse_postorder (Node n){

2 // Step 1: We traverse the left subtree, using recursion;
3 if (n.left is not null){

4 dfs_traverse_postorder(n.left);

5 3

6 // Step 2: We traverse the right subtre, using recursion;
7 if (n.right is not null){

8 dfs_traverse_postorder(n.right);

° 3

10 // Step 3: Visit the node, in this case we print its value
1 print(n.content);

12}

13

1 function main(){

15 Node root = build_example_tree();
16 dfs_traverse_postorder(root);
17}

4 SOME COMPUTER SCIENCE FUNDAMENTALS 117

2D Game Development: From Zero To Hero

4.15.2.1.4 Reverse Traversals

These kinds of traversals are essentially the same of the ones we’ve already seen, but the right subtree is given

priority over the left. Here are the operations, listed for reference.

Reverse Pre-Order:

1. Visit the current node
2. Recursively traverse the current node’s right subtree

3. Recursively traverse the current node’s left subtree

Reverse In-Order:

1. Recursively traverse the current node’s right subtree
2. Visit the current node

3. Recursively traverse the current node’s left subtree

Reverse Post-Order:

1. Recursively traverse the current node’s right subtree
2. Recursively traverse the current node’s left subtree

3. Visit the current node

The code will be omitted, since it is easy to infer how the code would look, given the previous examples.

4.15.2.2 Breadth-first search

Breadth-first search, or BFS, uses a concept that is opposite of the one in DFS (Depth-first search): instead of going

as deep as possible inside the tree, this algorithm prefers exploring “in layers”.

The root will be visited first, then all its children, after that all its nephews, etc...

4 SOME COMPUTER SCIENCE FUNDAMENTALS

118

2D Game Development: From Zero To Hero

Figure 88: Order in which the nodes are visited during BFS

In the implementation shown here, the steps are the following:

. Make a queue and enqueue the root
. If the queue is not empty, take the first node, if it is empty, just stop
. If such node has any children, enqueue them, in order

. Visit the node

v A~ W N -

. Go back to point 2

A possible implementation of a BFS algorithm could be the following:

Listing 28: Traversal of a tree using BFS

1 function traverse_bfs(Node root){

2 // We will use a queue for this algorithm

3 Queue g = new Queue();

4 // First thing, we enqueue the root

5 g.enqueue(root);

6 // Now comes the iterative part. This will keep going until
7 // the tree is completely explored.

8 while (g is not empty){

9 // We take the first node in the queue

10 Node n = qg.dequeue();

1 // We enqueue its children, if they exist
12 if (n.left is not null){

13 q.enqueue(n.left);

14 3

15 if (n.right is not null){

16 g.enqueue(n.right);

17 }

4 SOME COMPUTER SCIENCE FUNDAMENTALS 119

2D Game Development: From Zero To Hero

18 // Now we visit the current node

19 print(n.content);

20 // The loop will continue with the next node in the layer,
21 // automatically start the next layer, or stop because there
22 // are no more nodes to visit.

23 }

24 }

BFS is a great algorithm to solve mazes and find the shortest path between two nodes, making it a good choice for
Path finding.
4.15.3 Dynamic Arrays

In many languages, arrays are sized statically, with a size decided at compile time. This severely limits the array’s

usefulness.

Dynamic Arrays are a wrapper around arrays, allowing it to extend its size when needed. This usually entails some

additional operations when inserting or deleting an item.

Dynamic_Array

Capacity: 4
Filled: 3
Native_array

Figure 89: Dynamic Arrays Reference Image

4.15.3.1 Performance Analysis

Indexing an item is immediate, since arrays allow to natively index themselves.

Inserting an item at the beginning is a heavy task, since it requires either moving all the present items or rebuilding
the internal native array. Such operations require copying or moving each element, giving us a time complexity

averaging on o(n).

Dynamic_Array

B

Native_array

Capacity: 4
Filled: 2

Dynamic_Array

-]

Value to insert

Native_array

Capacity: 4
Filled: 2

Dynamic_Array

Native_array

Capacity: 4
Filled: 3

Figure 90: Adding an element at the beginning of a Dynamic Array

Inserting an item at the end, if we keep a pointer to the last item inserted, is an operation that usually happens
immediately (time complexity 0(1)), but when the array is full, we need to instantiate a new native array (usually

double the size of the current one) and copy all elements inside the new array (operation that has time complexity

4 SOME COMPUTER SCIENCE FUNDAMENTALS 120

2D Game Development: From Zero To Hero

of 0(n)). Since the number of 0(1) operations outweighs by a long shot the number of 0(n) operations, it's possible to
demonstrate that in the long run appending an item at the end of a dynamic array has a time complexity averaging

around 0(1).

Dynamic_Array Dynamic_Array
The array is full, doubling needed Doubling the size of the array
Capacity: 4 Capacity: 8
Filled: 4 Filled: 0
Native_array Native_array
o ST]
Value to Insert Value to Insert
Dynamic_Array Dynamic_Array
Inserting previously present elements Inserting new element
Capacity: 8 Capacity: 8
Filled: 4 Filled: 5
Native_array Native_array
1 2 3 4 1 2 3 4
III °
Value to Insert

Figure 91: Adding an element at the end of a Dynamic Array

Inserting an item in an arbitrary position, much like inserting an item at the beginning requires moving some items
further into the array, potentially all of them (when the arbitrary position is the beginning of the array), thus giving us

a time complexity of o(n). Such operation could trigger an array resize, which has no real influence on the estimate.

Dynamic_Array Dynamic_Array Dynamic_Array

Moving the items Inserting the item

Capacity: 4 Capacity: 4 Capacity: 4
Filled: 2 Filled: 2 Filled: 3
Native_array Native_array Native_array

@

Value to insert Value to insert

Figure 92: Adding an element at an arbitrary position of a Dynamic Array

Some implementations of the Dynamic Arrays try to save space when the number of items goes lower than i of the
array capacity during a deletion, the internal array is rebuilt with half the size. Such operation has a time complexity

of o(n).

Some other implementations use a %/% rule, halving the array capacity when the item deletion brings the number
of items lower than i of the array and doubling it when an insertion makes the number of elements higher than %

of the array capacity.

Not all programming languages have native support for arrays, for instance Python

normally uses lists (although it supports arrays via the array standard library).

4 SOME COMPUTER SCIENCE FUNDAMENTALS 121

2D Game Development: From Zero To Hero

Table 29: Performance table for Dynamic Arrays

Operation Average Cost
Indexing 0o(1)
Insert/Delete At Beginning O(n)

Insert/Delete At End 0O(1) amortized
Insert/Delete at position O(n)

Table 30: Summary Table for Dynamic Arrays

Container Name Dynamic Array
When To Use it All situations that require direct indexing of a container, but insertions and
removals are not extremely common, and usually take the form of “push back”

(insertion at the end)

Advantages Direct Indexing, Fast iteration through all the elements, given by the fact that

arrays are stored compact in memory, fast appending.

Disadvantages Slow insertions in arbitrary positions and at the head of the array.

4.15.4 Linked Lists

Linked Lists are a data structure composed by “nodes”, each node contains data and a reference to the next node in

the linked list. Differently from arrays, nodes may not be contiguous in memory, which makes indexing problematic.

Linked_List

T

Data Next Data Next Data Next

Figure 93: Linked List Reference Image

Some implementations feature a pointer to the last element of the list, to make appending items at the end easier

and quicker.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 122

2D Game Development: From Zero To Hero

Linked_List
Tail
Head

Data Next Data Next Data Next

Figure 94: Double-Ended Linked List Reference Image

4.15.4.1 Performance Analysis

Since we only have a handler on the first node, indexing requires us to scan all the elements until we reach the one

that was asked for. This operation has a potential time complexity of 0(n).

Inserting an item at the beginning is immediate, we just need to create a new node, make it point at the current
head of the list and then update our “handle” to point at the newly created node. The number of operations is

independent of how many data we already have, so the time complexity is 0(1).

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ st . ke st u
= | 3 AT H T EESEESEN

Figure 95: Inserting a new node at the beginning of a linked list

Appending an item at the end has a time complexity that varies depending on the chosen implementation: if the
list has a reference to the final node, we just need to create a new node, update the final node’s reference (usually
called “next”) to point at the new node and then update the reference to the final node to point at the newly created
node (time complexity 0(1)). If our queue doesn’t have such reference, we will need to scan the whole list to find

the final node (time complexity 0(n)).

Linked_List Linked_List

e | 3 R EESRE RN

Figure 96: Inserting a new node at the end of a (double-ended) linked list

Inserting at an arbitrary position requires us to scan the list until we find the position that we want, after that we

just need to split and rebuild the references correctly, which is a fast operation.

Figure 97: Inserting a new node at an arbitrary position in a (double-ended) linked list

4 SOME COMPUTER SCIENCE FUNDAMENTALS 123

2D Game Development: From Zero To Hero

Table 31: Performance table for Linked Lists

Operation Average Cost
Indexing O(n)
Insert/Delete At Beginning 0(1)
Insert/Delete At End 0O(1) for double-ended, o(n) otherwise
Insert/Delete at position time to search + O(1)

Table 32: Summary Table for Linked Lists

Container Name Linked List

When To Use it All situations that require quick insertions/removals, either on the head or the tail
(used as stacks or queues).

Advantages Very fast insertions/removals, quite fast iteration through all the elements.

Disadvantages Slow indexing at an arbitrary position. Sorting can be complex.

4.15.5 Doubly-Linked Lists

A doubly-linked list is a variation of a linked list where each node not only has a reference to its successor, but
also a reference to its predecessor. This allows for easy processing of the list in reverse, without having to create

algorithms that entail a huge overhead.

All the operations of insertion, indexing and deletion are performed in a similar fashion to the classic singly-linked

list we saw earlier, just with an additional pointer to account for.

Linked_List

\\4 . /\\)

Prev Data Next Prev Data Next Prev Data Next

Figure 98: Doubly Linked List Reference Image

Table 33: Performance table for Doubly-Linked Lists

Operation Average Cost
Indexing O(n)
Insert/Delete At Beginning 0(1)
Insert/Delete At End 0o(1)

4 SOME COMPUTER SCIENCE FUNDAMENTALS 124

2D Game Development: From Zero To Hero

Operation Average Cost

Insert/Delete at position time to search + O(1)

Table 34: Summary Table for Linked Lists

Container Name

When To Use it

Advantages

Disadvantages

Doubly-Linked List

All situations that require quick insertions/removals, either on the head or the tail

(stacks or queues) or iterating through an entire list, forwards or backwards.

Very fast insertions/removals, quite fast iteration through all the elements.

Possibility of easily iterating the list in reverse order.

Slow indexing at an arbitrary position. Sorting can be complex.

4.15.6 Hash Tables

Hash Tables are a good way to store unordered data that can be referred by a “key”. These structures have

different names, like “maps”, “dictionaries” or “hash maps”.

The idea behind a hash map is having a key subject to a hash function,; that will decide where the item will be

positioned in the internal structure.

Value

—

| Hash Function

| ww»wok—l

Figure 99: Hash Table Reference Image (Hash Table with Buckets)

The simplest way to implement a hash table is using an “array with buckets”: an array where each cell has a reference

to a linked list.

On average, finding an item requires passing the key through the hash function, such hash function will tell us where

the item is in our internal structure immediately. Thus giving a time complexity of O(l).

4 SOME COMPUTER SCIENCE FUNDAMENTALS 125

2D Game Development: From Zero To Hero

Inserting has more or less the same performance, the key gets worked through the hash function, deciding which

linked list will be used to store the item.

Deletion works in the same fashion, passing the key through the hash function and then deleting the value; giving

a time complexity of O(1)

Table 35: Performance table for Hash Tables

Operation Average Cost

Searching 0o(1)
Insert 0O(1)
Delete 0(1)

Table 36: Summary Table for Hash Tables

Container Name Hash Table

When To Use it All situations that require accessing an element by a well-defined key quickly.
Building unordered data sets.

Advantages Fast insertions/removals, direct indexing (in absence of hash collisions) by key.

Disadvantages In case of a bad hashing function, it reverts to the performance of a linked list,

cannot be ordered.

4.15.7 Binary Search Trees (BST)

Binary search trees, sometimes called “ordered trees” are a container that have an “order relation” between their

own elements.

Left Data Right

Figure 100: Binary Search Tree Reference

The order relation allows us to have a tree that is able to distinguish between “bigger” and “smaller” values, thus

making search really fast at the price of a tiny slowdown in insertion and deletion.

Searching in a BST is easy, starting from the root, we check if the current node is the searched value; if it isn't we

compare the current node’s value with the searched value.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 126

2D Game Development: From Zero To Hero

If the searched value is greater, we search on the right child. If it is smaller, we continue our search on the left child.

Recursively executing this algorithm will lead us to find the node, if present. Such algorithm has a O(log(n)) time

complexity.

In a similar fashion, insertion will recursively check subtrees until the right spot of the value is found. The insertion

operation has the same time complexity as searching: O(log(n)).

Deletion is a bit more conceptually complex, since it's necessary to maintain the ordering of the nodes. Such

operation has a time complexity of O(log(n)).

Table 37: Performance table for Binary Search Trees

Operation Average Cost

Searching O(log(n))
Insert O(log(n))

Delete O(log(n))

Table 38: Summary Table for Binary Search Trees

Container Name Binary Search Tree

When To Use it Situations that require good overall performance and requires fast search times.
Advantages Good insertion and removal times, searching on this structure is fast.
Disadvantages Given the nature of the data structure, there is no direct indexing, nor ordering.

4.15.8 Heaps

Heaps are a tree-based data structure where we struggle to keep a so-called “heap property”. The heap property

defines the type of heap that we are using:

* Max-Heap: For each node N and its parent node P, we'll always have that the value of P is always greater or
equal than the value of N;
* Min-Heap: For each node N and its parent node P, we'll always have that the value of P is always less or equal

than the value of \;

4 SOME COMPUTER SCIENCE FUNDAMENTALS 127

2D Game Development: From Zero To Hero

Figure 101: Heap Reference Image (Min-Heap)

Heaps are one of the maximally efficient implementation of priority queues, since the highest (or lowest) priority

item is stored in the root and can be found in constant time.

Table 39: Performance table for Heaps

Operation

Average Cost

Find Minimum
Remove Minimum

Insert

O(1) to O(log(n)), depending on the implementation

O(log(n))
O(1) to O(log(n)) depending on the implementation

Table 40: Summary Table for Heaps

Container Name

When To Use it

Advantages

Disadvantages

Heap

All situations where you require to find and/or extract the minimum or maximum
value in a container quickly; like priority queues.

Good general time complexity, maximum performance when used as priority
queues.

No inherent ordering, there are better solutions for general use.

4.15.9 Stacks

Stacks are a particular data structure, they have a limited way of working: you can only put or remove items on top

of the stack, plus being able to “peek” on top of the stack.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 128

2D Game Development: From Zero To Hero

Push \ / Pop

«—— Stack Pointer

Figure 102: How a stack works

Stacks are LIFO (Last in - First Out) data structures, and can be implemented with both a linked list or a cleverly-

indexed array.

Depending on the single implementation, the operation used to “pop” an item from the stack will also return the

element, ready to be used in an upcoming computation.

Stack Pointer

l

Array 1 5

Linked List 5 1

Stack Pointer

Figure 103: Array and linked list implementations of a stack

4.15.10 Queues

Queues are the exact opposite of stacks, they are FIFO (First in - First Out) data structures: you can put items on the

back of the queue, while you can remove from the head of the queue.

Dequeue Enqueue

Figure 104: How a queue works

Depending on the single implementation, the operation used to “dequeue” an item from the queue will also return

the element just removed, ready to be used in an upcoming computation.

As with stacks, queues leverage limitations in their way of working for greater control over the structure itself.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 129

2D Game Development: From Zero To Hero

Usually queues are implemented via linked lists, but can also be implemented via arrays, using multiple indexes and

index-wrapping when iterating.

Head Tail
N\ /
Array 1 5
Linked List 1 5
Head Tail

Figure 105: Array and linked list implementation of a queue

4.15.11 Circular Queues

Circular Queues are a particular kind of queues that are infinitely iterable, every time an iterator goes after the last

element in the queue, it will wrap around to the beginning.

Pointer

N LT

\ 0 4

Figure 106: How a circular queue works

Circular Queues can be implemented via linked lists or cleverly indexed arrays, with all the advantages and disad-

vantages that such structures entail.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 130

2D Game Development: From Zero To Hero

Head Tail
\ /
Array 1 5
Linked List 1 5
Head Tail

Figure 107: Array and linked list implementation of a circular queue

4.16 The principle of locality

This is one of the most-talked about principles in computer science: it usually refers to the principle of “memory

locality”, but it may also refer to other kinds, like “temporal locality” or “branch locality”.

Let’s analyze the most common ones.

* Spatial locality: (sometimes called “memory locality”) if a certain region of storage (or memory) is refer-
enced, there is a good probability that nearby regions of storage (or memory) will be referenced in the near
future. This is true, for instance, in Arrays.

+ Temporal locality: if a certain region of storage (or memory) is referenced, there is a good probability that
the same region will be referenced in the near future. CPU caches leverage this principle by copying recently-

used data into faster storage.

Temporal locality can be seen as a special case of spatial locality.

4.17 Treating multidimensional structures like one-dimensional ones

This is usually done when dealing with pointers, but we may need to use some math to deal with sprites and

animations too.
As we’ll see in the Sprite sheets section, it is more efficient to store sprites and animation frames in sprite sheets.

When dealing with frames of animation, we like our frames to be “one-dimensional”, each “cell” represents a certain

“time”.

O|1(2(3|4|5|6]|7

Figure 108: The “easy way” of dealing with frames

When dealing with sprite sheets, we may find that our animation has frames saved in a “matrix” of some sort, like

4 SOME COMPUTER SCIENCE FUNDAMENTALS 131

2D Game Development: From Zero To Hero

SO:

€ 1ybieH

=
O |W|O|°

1
4|5
7

Width: 3

Figure 109: A sample sprite sheet with the same frames as before

The images we've just seen will help you understand how the following formulas work.

To convert from 2-dimensional (row, column) coordinates to a single index, the formula is:

index = width x row + column

Remember that in many programming languages arrays and similar structures are 0-
indexed. This is the system that will be used here.
If you're using a language that indexes arrays starting from 1 (like Lua), these formulas

need to be changed a bit.

So if | want to know the index of the 3rd element of the second row, with index (2,1), the formula becomes:

index =3x1+2=5

The inverse formula is the following:

index J

row = | G

column = index%width

So if we wanted to know the (row,column) position of the frame with index 7 we would have:

row = | %] =[2.33333] =2

column = T%3 =1

4 SOME COMPUTER SCIENCE FUNDAMENTALS

132

2D Game Development: From Zero To Hero

This can be done with structures with n dimensions, but the formula becomes a lot

more complex the more dimensions you add. We’'ll stop at 2 for now.

4.18 Data Redundancy

When dealing with certain structures, there are operations that are inherently complex to do: let’s take for example

counting the elements in a list:

Listing 29: Counting the elements in a list

1 class List{

2 Node nodelist;

3 //

4 function getlLength() -> int{
5 int counter = 0;

6 for (item in nodelList){

7 counter = counter + 1;
8 3

9 return counter;

10 3

u }

It's easy to see that an algorithm like this has a @(n) complexity, which may not be ideal for an operation as common

as finding the length of a list.

This is where data redundancy comes into play: the length of a list is an intrinsic property of the list itself, so why

not save it inside the “head” of our structure?

This will obviously require a bit more work in all the methods that will change the number of elements inside the list,
since we need to keep the “length” property in sync with the actual length of the list, but in exchange we can count

the elements in a list by doing a simple lookup.

Let’s see an example implementation:

Listing 30: Counting the elements in a list with data redundancy

1 class List{

2 Node nodelist;

3 int length;

4 /7

5 function getLength() -> int{
6 return length;

7 3

8

9 function addItem(Node node){

4 SOME COMPUTER SCIENCE FUNDAMENTALS 133

2D Game Development: From Zero To Hero

10 // ... Normal operation

1 /7

12 // We update our length counter
13 length = length + 1;

14 3

15

16 function removeItem(Node node){

17 // ... Normal removal operation
18 //

19 // We update our length counter
20 length = length - 1;

21 3

22

23 function clear(){

24 // ... Normal clear operation
25 //

26 // We clear the length too

27 length = 0;

28 }

29

30 /7

1}

Pitfall Warning!

‘ ‘ ‘ It is extremely important that we keep our “redundant properties” synchronized with

 J

the actual state of our objects, even when exceptions are raised. Not doing so will

create bugs.

Let’s consider another example: we have a standard linked list, like the one that follows:

Linked_List
Pointer
\’ Head

Data Next Data Next Data Next

Figure 110: Singly-Linked List has no redundancy

Our “pointer” is pointing the node containing the number “5”, and now we want to know the value of the node that
precedes it. To do that we need to start from the head, saving in a temporary variable our nodes, until we find the

node pointed by our “pointer”.

Listing 31: Finding the previous element in a singly linked list

1 function get_previous_node(List 1st, Node current_node) -> Node{

4 SOME COMPUTER SCIENCE FUNDAMENTALS 134

2D Game Development: From Zero To Hero

2 Node pointer = 1lst.head;

3 Node previous = null;

4 while (pointer != current_node){
5 previous = pointer;

6 pointer = pointer.next;

7 3

8 return previous;

o }

This operation has O(n) complexity, which is not great. If we wanted to print a list in reverse with such technique,

the situation would be even worse.

Doubly-linked lists are another example of data redundancy. We are saving the content of the “previous” node, so

that we can do a simple lookup with complexity O(l) and easily (and efficiently) do our “reverse printing”.

Linked_List

\\47/\\9/\\5)

Prev Data Next Prev Data Next Prev Data Next

Figure 111: A doubly linked list is an example of redundancy

4.19 Introduction to Multi-Tasking

When it comes to humans, we are used to have everything at our disposal immediately, but when it comes to

computers, each processing unit (CPU) is usually able to perform only one task at a time.

To allow for multi-tasking (doing many activities at once), the CPU switches between tasks at high speeds, giving
us the illusion that many things are happening at once. There are many methods to ensure multi-tasking without
process starvationy,;, the most used is pre-emption;;; where there are forced context switches between processes,

to avoid one hogging the CPU.

4.19.1 Multi-Threading vs Multi-Processing

Sometimes Multi-Threading and Multi-Processing are used interchangeably, but this is actually not correct. Let’s see

the differences between the two terms and how they contribute (in different ways) to allow multi-tasking.

Multi-Processing is a practice that makes use of multiple CPUs inside the same machine, this allows to process CPU-
intensive calculations in a parallel manner, thus gaining performance in our software. This style of parallelization is

usually done by spawning multiple processes, each of which will be run on a different CPU (or Core).

4 SOME COMPUTER SCIENCE FUNDAMENTALS 135

2D Game Development: From Zero To Hero

Figure 112: In a multi-processing environment, each CPU takes care of a task

Multi-Processing has some disadvantages: creating a process can be quite expensive and thus give us some tangible

overhead if processes are created and destroyed often.

Multi-Threading is a programming practice that allows to run different “lines of execution” (called “threads”), inside

of the same parent process, so to achieve the maximum possible CPU utilization.

Multi-Threading has the advantage of lower overhead, since threads are quite cheap to create, but also has some

more limitations when the tasks to execute are “CPU-bound” (take a lot of CPU time).

Figure 113: In multi-threading, the CPU uses I/O wait time to take care of another task

Multi-Threading works well when the threads are “I/O bound” (they use network or disk a lot, while the CPU usage
is low), this means essentially that while one thread is waiting for 1/O (like loading an asset), another thread can

perform other calculations on the CPU instead of just “wait for the 1/O to finish”.

4.19.2 Coroutines

If you search for the word “coroutine” online, you will find a lot of extremely convoluted explanations involving the
knowledge of the difference between preemptivey,; and non-preemptive multitasking, subroutines, threads and lots

more. Let’s try to make sense of this.

First of all, coroutines are computer programs can run in multitasking (so it can run separated from our main game
loop) which are used in non-preemptive multitasking. Differently from the preemptive style defined in the glossary,
in non preemptive multitasking the operating system never forces a context switch, but it's the coroutine’s job to

yield the control over to another function.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 136

2D Game Development: From Zero To Hero

Instead of “fighting for resources”, coroutines politely free the processor and give control of it to something else

(could be the caller or another coroutine), this form of multitasking is often called cooperative multitasking.

A particularly interesting point of coroutines is the fact that their execution can be “suspended” and “resumed”
without losing its internal state. Coroutines are used in more advanced engines (using the Actor Model) and in some
particular situations. You may never need to use a single coroutine, or you may need to use them every day, so it's

worth knowing at least what they are.

4.20 Introduction to Multi-Threading

When it comes to games and software, we usually think of it as a single line of execution, branching to (not really)
infinite possibilities; but when it comes to games, we may need to dip our toes into the world of multi-threaded

applications.

4.20.1 What is Multi-Threading

Multi-Threading means that multiple threads exist in the context of a single process, each thread has an independent

line of execution but all the threads share the process resources.
In a game, we have the “Game Process”, which can contain different threads, like:

* World Update Thread
* Rendering Thread
* Loading Thread

Multi-Threading is also useful when we want to perform concurrent execution of activities.

4.20.2 Why Multi-Threading?

Many people think of Multi-Threading as “parallel execution” of tasks that leads to faster performance. That is not
always the case. Sometimes Multi-Threading is used to simplify data sharing between flows of execution, other

times threads guarantee lower latency, other times again we may need threads to get things working at all.

For instance let’s take a loading screen: in a single-threaded application, we are endlessly looping in the input-
update-draw cycle, but what if the “update” part of the cycle is used to load resources from a slow storage media

like a Hard Disk or even worse, an optical disk drive?

The update function will keep running until all the resources are loaded, the game loop is stuck and no drawing will
be executed until the loading has finished. The game is essentially hung, frozen and your operating system may
even ask you to terminate it. In this case we need the main game loop to keep going, while something else takes

care of loading the resources.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 137

2D Game Development: From Zero To Hero

4.20.3 Thread Safety

Threads and concurrent execution are powerful tools in our “programmer’s toolbox”, but as with all powers, it has

its own drawbacks.

4.20.3.1 Race conditions

Imagine a simple situation like the following: we have two threads and one shared variable.

Thread 1 Thread 2

Copy of

Copy of
Variable

Variable

Variable

1

Result Result

Figure 114: Two threads and a shared variable

Both threads are very simple in their execution: they read the value of our variable, add 1 and then write the result

in the same variable.

This seems simple enough for us humans, but there is a situation that can be really harmful: let’s see, in the following

example each thread will be executed only once. So the final result, given the example, should be “3".
First of all, let's say Thread 1 starts its execution and reads the variable value.

Read

Thread 1 Thread 2

Copy of

Copy of
Variable

Variable

Variable

1

Result Result

Figure 115: Thread 1 reads the variable

Now, while Thread 1 is calculating the result, Thread 2 (which is totally unrelated to Thread 1) starts its execution

and reads the variable.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 138

2D Game Development: From Zero To Hero

Read
—

Thread 1

Copy of

Thread 2

Variable

1

Variable

1

Copy of
Variable

Result

Result

Figure 116: While Thread 1 is working, Thread 2 reads the variable

Now Thread 1 is finishing its calculation and writes the result into the variable.

Thread 1 Thread 2
Copy of Copy of
Variable Variable
1 Variable 1
Result / Result
Write
Result

Figure 117: Thread 1 writes the variable

After That, Thread 2 finishes its calculation too, and writes the result into the variable too.

Thread 1 Thread 2
Copy of Copy of
Variable Variable
1 o 1
Result \—/ Result
Terminated .
Write
Result

Figure 118: Thread 2 writes the variable

Something is not right, the result should be “3”, but it's “2"” instead.

4 SOME COMPUTER SCIENCE FUNDAMENTALS

139

2D Game Development: From Zero To Hero

Thread 1 Thread 2

Copy of Copy of
Variable Variable

1 e 1
2

Result Result
2 2

Terminated Terminated

Figure 119: Both Threads Terminated

We just experienced what is called a “race condition”: there is no real order in accessing the shared variable, so
things get messy and the result is not deterministic. We don’t have any guarantee that the result will be right all

the time (or wrong all the time either).

4.20.3.2 Critical Regions

Critical Regions (sometimes called “Critical Sections”) are those pieces of code where a shared resource is used, and
as such it can lead to erroneous or unexpected behaviors. Such sections must be protected from concurrent access,

which means only one process or thread can access them at one given time.

4.20.4 Ensuring determinism

Let’s take a look at how to implement multi-threading in a safe way, allowing our game to perform better without
non-deterministic behaviors. There are other implementation approaches (like thread-local storage and re-entrancy)

but we will take a look at the most common here.

4.20.4.1 Immutable Objects

The easiest way to implement thread-safety is to make the shared data immutable. This way the data can only
be read (and not changed) and we completely remove the risk of having it changed by another thread. This is an
approach used in many languages (like Python and Java) when it comes to strings. In those languages strings are

immutable, and “mutable operations” only return a new string instead of modifying the existent one.

4.20.4.2 Mutex

Mutex (Short for mutual exclusion) means that the access to the shared data is serialized in a way that only one
thread can read or write to such data at any given time. Mutual exclusion can be achieved via algorithms (be careful

of out of order executionyy;), via hardware or using “software mutex devices” like:

* Locks (known also as mutexes)
* Semaphores

* Monitors

* Readers-Writer locks

¢ Recursive Locks

4 SOME COMPUTER SCIENCE FUNDAMENTALS 140

2D Game Development: From Zero To Hero

Usually these multi-threaded functionalities are part of the programming language used, or available via libraries.

Let’s see how Mutex solve our concurrency problem.

As seen before, we have a shared variable and two threads that want to add one to it.

Thread 1

Thread 2

Copy of
Variable

Copy of
Variable

Variable

1

Result

Result

Figure 120: How mutex works (1/8)

Now the first thread reads the variable and “locks” the mutex (thus stopping other threads from accessing the
variable).

Read
Thread 1

‘ ' Thread 2
A ©® |4
yr
Copy of
Variable

Copy of
Variable

Variable

1

Result

Result

Figure 121: How mutex works (2/8)

When the second thread wants to access the “critical region”, it will check on the Mutex, find it “locked” and be

forced to wait: it cannot read the variable, because we would have a “race condition” otherwise

Regdd
E Thread 1 ‘ ' Thread 2 &
r

Copy of
Variable

Copy of

Variable
1

Variable

1

Result

Result

Figure 122: How mutex works (3/8)

As soon as the first thread finishes its job, it will write the result in the variable and “unlock” the mutex, allowing
others to access the variable.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 141

2D Game Development: From Zero To Hero

Thread 1 Thread 2 &
A\ O|4
\mw
Copy of or Copy of
Variable Variable
1 Variable
1
Result Result
2
Write
Result

Figure 123: How mutex works (4/8)

Since the second thread was waiting, it will read the variable result (now 2) and “lock” the mutex for safety. The
second thread entered the “critical region”.

Read
Thread 1

Thread 2
\yr
A © |4

Copy of ‘ '

Variable

Copy of

Variable
1

Variable

Result Result

Figure 124: How mutex works (5/8)

The second thread will do its job as normal, if a third thread tried to access the variable, it would be stopped by the
locked mutex.

Thread 1 Thread 2 pA—
r
Ny
Copy of oy Copy of
Variable Variable
1 Variable 2
Result Result

Figure 125: How mutex works (6/8)

When its job is done, the second thread will write to the variable and “unlock” the Mutex, thus allowing other threads
or processes to access the variable.

4 SOME COMPUTER SCIENCE FUNDAMENTALS 142

2D Game Development: From Zero To Hero

Thread 1 Thread 2
A ©® |4
S
Copy of N | 4 Copy of
Variable Variable
1 Variable 2
3
Result Result
2 3
Terminated .
Write
Result

Figure 126: How mutex works (7/8)

Now both threads finished their jobs and the result inside the variable is correct.

Thread 1 Thread 2

Copy of

Copy of
Variable

Variable

1 Variable 2
3

Result Result

2 3

Terminated

Terminated

Figure 127: How mutex works (8/8)

4.20.4.3 Atomic Operations

[This section is a work in progress and it will be completed as soon as possible]

4 SOME COMPUTER SCIENCE FUNDAMENTALS 143

2D Game Development: From Zero To Hero

5 A Game Design Dictionary

Why should you make games? Do it to give players joy from your unique

perspective and to have fun expressing yourself. You win and the players win.

Duane Alan Hahn

In this section we will talk about platforms, input systems and game genres, in a quick fashion. This chapter will
introduce you to the language and terms used in game design, this way the following chapters will be easier to

comprehend.

We will talk about the differences and challenges deriving from each decision and the basic way game genres work.
The objective of this chapter is giving you some terminology and knowledge about game design, before deep-diving

into the topic.

5.1 Platforms

There are several different platforms a game can be developed for, and each one has its own advantages and

drawbacks. Here we will discuss the most notable ones.

5.1.1 Arcade

Arcade cabinets have been around for decades, and have still a huge part in the heart of gaming aficionados with
classic series going on like “Metal Slug”. The main objective of these machines is to make you have fun, while forcing

you to put quarters in to continue your game.

These cabinets’ software is known to be very challenging (sometimes due to the fact that you're popping quarters
into the machine for the “right to play”), having some nice graphics and sound. Arcade games are usually presented
in the form of an “arcade board”, which is the equivalent of a fully-fledged console, with its own processing chips

and read-only memory.

Figure 128: How an arcade machine usually looks like

5 A GAME DESIGN DICTIONARY 144

2D Game Development: From Zero To Hero

In the case of arcades, the hardware is usually tailored to support the software; with some exceptions added later
(like the Capcom Play System, also known as CPS), where the hardware is more stable between arcades, while the

software changes.

5.1.2 Console

Consoles are a huge (if not the biggest) part in the video game industry. Their Hardware is dedicated solely to
gaming (and some very marginal “multimedia functionalities”) and it evolves in “generations”: this means that

each “generation” has a stable hardware programmers can study and exploit.

Figure 129: A portable console

This hardware stability is a double-edged sword: the hardware can be really hard to master at the beginning, resulting
in some poor-performing games at the beginning of the generation, but when mastered the results are incredible.

This feeds into a cycle that looks like the following:

=

New Generation is introduced

2. Initial confusion, with poor performance and graphics

3. Hardware is mastered and games have great performance/graphics
4

. The games become “too big” for the current generation and a new generation must be introduced.

5.1.3 Personal Computer

Personal Computers are another huge part of the video game industry. They are extremely flexible (being general-
purpose machines) but have a huge drawback: their hardware is not the same from one unit to the other. This means

that the programmer needs to use “abstraction layers” to be able to communicate with all the different hardware.

5 A GAME DESIGN DICTIONARY 145

2D Game Development: From Zero To Hero

Figure 130: A personal computer

This compounds with the fact that “abstraction layers” used by the developer (like SDL, SFML or GLFW) are running on
top of other “abstraction layers”, like sound servers, device drivers, etc... which can be littered with bugs themselves.

Just look at how many indirections we have on a modern Linux system (which is usually bundled with PulseAudio):

Game

SDL/SFML/GLFW

l

PulseAudio Library Layer

l

PulseAudio Engine

l

Linux Kernel Drivers

l

Sound Card

Figure 131: How many abstraction layers are used just for a game to be able to play sounds

This can have performance costs, as well as forcing the programmer to add options to lower graphic settings, reso-

lution and more.

5 A GAME DESIGN DICTIONARY 146

2D Game Development: From Zero To Hero

All of this just to be able to run on as many computers as possible. The upside is that when the computer is really

powerful, you can get great performance and amazing quality, but that’s a rare occasion.

5.1.4 Mobile

One of the most recent platforms game developers work on is right in your pocket: your smartphone.

E

Figure 132: A smartphone

Today’s smartphones have enough power to run fully-fledged video games, on the go. Sadly the touch screen can

prove to be really uncomfortable to use, unless the game is specially tailored for it.

5.1.5 Web

Another platform that has seen a massive rise in recent times is the Web: with WebGL and WebAssembly, fully-
fledged games (including 3D games) can run on our browser, allowing for massively-multiplayer experiences (like

Agar.io) without the hassle of manual installation or making sure the game is compatible with your platform.

°
°
°
o
m

Figure 133: Fully fledged games can run in your browser nowadays

A drawback of the “web approach” is the limited performance that web browsers, WebGL and WebAssembly can give,
as well as the need to download the game before being able to play (and sometimes you may need to re-download

the game if you cleared your browser’s cache).

5 A GAME DESIGN DICTIONARY 147

2D Game Development: From Zero To Hero

5.2 Input Devices

A game needs a way to be interacted with: this “way” is given by input devices. In this section we will take a brief

look at the input devices available in a game.

5.2.1 Mouse and Keyboard

One of the most common input devices, most of the currently available frameworks and engine have support for
input via mouse and keyboard. These input methods are great for visual novels, point and click adventures, FPS/TPS

games and anything that is considered to be “made for PCs”.

5.2.2 Gamepad

One of the classics of input devices, works well with the majority of games: FPS/TPS games may need some aim

assist mechanic in your game. Point and click adventures feel clunky with this input method.

As with Mouse and Keyboard, most of the currently available engines and frameworks support gamepads.

5 A GAME DESIGN DICTIONARY 148

2D Game Development: From Zero To Hero

5.2.3 Touch Screen

With the coming of smartphones, touch screen is a new input device that we have to account for. Touch screens

emulate computer mice well enough, although they lack precision.

The nature of being a mix between an input device and a screen brings a lot of new ways to experience a game
if well done. Many times touch screens are used to simulate game pads: the lack of the tactile feedback given by

buttons makes this simulation clunky and uncomfortable.

Some of the most recent framework and engines support touch screens, although there’s an additional layer of

complexity given by the specific operating system of the smartphone you’re building for.

5.2.4 Dedicated Hardware

Some games require dedicated hardware to work at their best, if at all. Guitars (guitar hero), wheels for racing

games, joysticks for flying simulators, arcade sticks for arcade ports...

Dedicated hardware requires precise programming, and is usually an advanced topic. On PCs many “dedicated input

devices” are recognized as “game pads” and use an “axis” and “buttons” abstraction that makes coding easier.

5.2.5 Other Input Devices

A special mention is deserved for all the input devices that are “general purpose” (as in not “dedicated”) but are

still in a group outside what we saw so far.

5 A GAME DESIGN DICTIONARY 149

2D Game Development: From Zero To Hero

In this group we see gyroscopes, accelerometers (like the Nintendo Wii/Switch JoyCons), sensors, IR, as well as other

exotic hardware that can still be exploited in a video game.

5.3 Game Genres

Let’'s analyze some game genres to understand them better and introduce some technical language that may be

useful in writing a Game Design Document.

These genres are quite broad, so a video game is usually a mix of these “classes” (like a strategy+simulation game).

5.3.1 Shooters

Shooters are games that involve... shooting. They can include any kind of projectile (bullets, magic from a fairy,

arrows from a hunter) and can be crossed with any other genre (creating sub-genres in a way), like 2D platformers.

Some of the most known shooter genres are:

* FPS (first person shooters), 3D games where the game is shown from the point of view of the protagonist.
This involves only seeing a HUD and the weapon, instead of the whole character;

e TPS (third person shooters), 3D games where the game is shown from a behind-the-character perspective.
Some show the whole protagonist, while others adopt an over-the-shoulder perspective;

+ Top Down Shooters, usually 2D games where you may be piloting a vehicle (space ship, plane, etc...) and
shoot down waves of enemies, in this category we fit arena shooters (like Crimsonland) and space shooters
(like Galaga);

* Side scroller shooters, usually 2D games and platformers, where you control the protagonist and shoot

enemies on a 2D plane, in this category we find games like Metal Slug.

5.3.2 Strategy

Strategy games involve long-term planning and resource control, they are slower games, but can be really intense

when played in competition with other players.

Some of the most popular strategy genres are:

* RTS (real time strategy), where units are controlled in real time;

* Turn-based strategy, where units and resources are managed in turns;

5.3.3 Platformer

5 A GAME DESIGN DICTIONARY 150

2D Game Development: From Zero To Hero

Platformer games involve difficult jumps and precise movement, they can both be 2D and 3D games. A prime

example of platformer games is the Mario series: Mario 1,2,3 for 2D games and Mario 64 for 3D.

5.3.4 RPG

RPGs or “Role Playing Games” are games where you assume the role of a character in a fictional setting. In RPGs

the world is well-defined and usually have some level or class system and quite advanced item management.

RPGs can be either action/adventure, with real-time actions, turn-based or hybrid, where the movement is done in
real time but battles happen in turns. Some prime examples of RPG games are the Legend of Zelda series, as well

as the Final Fantasy series.

5.3.5 MMO

MMO (Massively Multiplayer Online) is a term used for games that have a heavy multiplayer component via the

internet. The most known MMO genre is MMORPGs (Massively Multiplayer Online Role-Playing Games).

5.3.6 Simulation

Simulation games cover a huge variety of games that are created to “simulate reality”, in more or less precise ways.

Among simulation games we can find:

* Racing Games: sometimes more simulative others more arcade-like, racing games simulate the experience
of driving a vehicle, more or less realistic (from modern cars to futuristic nitro-fueled bikes);

* Social Simulation: simulating the interaction between characters, a pioneer on the genre is surely “The
Sims”;

* Farming simulation: simulating the quietude and work in the fields;

* Business simulation: like “game dev tycoon” or “rollercoaster tycoon”;

But there are also other kinds of simulations, like Sim City, where you manage an entire city.

5.3.7 Rhythm Games

Rhythm games are based on the concept of following a music beat as precisely as possible, this can be also used as

a “mechanic” in other types of games.

5 A GAME DESIGN DICTIONARY 151

2D Game Development: From Zero To Hero

Some examples of Rhythm games are “Dance-Dance Revolution” (also known as DDR), as well as more innovative

games like “Crypt of the Necrodancer” (a mix between rhythm game and dungeon crawler).

5.3.8 Visual novels

Visual novels are graphical adventures whose primary objective is “telling a story”, they can be linear or have a

“choose your own path” component. They usually feature multiple endings and hand-crafted still images as artwork.

The more modern versions feature more interactive components and fully-fledged 3D graphics, but what ties the

genre together is usually a “point and click” style of gameplay.

@%%%

*Rey D

Puzzle games are centered about making the player think: they can test a lot of problem-solving skills from pattern

5.3.9 Puzzle games

recognition, to word completion, to logic.

Some example of puzzle games include Lemmings, Boulder Dash, any match-3 game (started with “Shariki”, followed

by “Bejeweled” until the more modern titles for mobile phones), and Tetris.

Puzzle games can involve math (like Sudoku), Physics (like the game “Peggle”), Hidden objects or even programming

(for instance “Shenzen I/0” for “realistic programming”, or “Opus Magnum” for a different approach).

Nothing stops other genres from including puzzle elements, but this small section is dedicated to the games that

feature puzzle elements as their core mechanic.

5.4 Miscellaneous

Here we will talk about some other terms that you may hear in the game development and design world, but that
don’t fit into a specific category.

5.4.1 Emergent Gameplay

Sometimes, when interacting with simple game mechanics, players can give life to complex situations. When that

happens usually we talk about “emergent gameplay”.

Emergent gameplay can take place in open-ended games, where there are many solutions to a situation and none

of them is “preferred by the game”. For instance, we can think of someone guarding a door, there are many ways

5 A GAME DESIGN DICTIONARY 152

2D Game Development: From Zero To Hero

to get through the guard, such as:

» Attacking the guard (and winning);
* Find an alternative path;
* Sneak around the guard to knock them unconscious;

* Find a way to make the guard leave their post;

Random Trivia!

A prime example of a game that leverages emergent gameplay is Minecraft. Players

can either survive, build palaces, build redstone circuits and much more.

5 A GAME DESIGN DICTIONARY 153

Part 2: Project Management

2D Game Development: From Zero To Hero

6 Project Management Basics and tips

Those who plan do better than those who do not plan even though they

rarely stick to their plan.

Winston Churchill

Project management is a very broad topic but | feel that some basics and tips should be covered in this book. Knowing
some project management can save you a lot of headaches and can make the difference between success and a

colossal failure.

6.1 The figures of game design and development

Before delving into the topic at hand, we need to familiarize ourselves with the main figures that are involved in the
process of game design and development, since you’ll probably (if you are the only developer of your game) have

to take upon all their tasks.

6.1.1 Producer/Project Manager

The producer is a figure that has experience in many fields and has an overall view of the project. They essentially

keep the project together.

Their duties are:

* Team Building (and its maintenance too);
» Distributing duties and responsibilities;

¢ Relations with the media.

Under the term “project manager” you can find different roles, among them:

¢ Product Manager;
¢ Assistant Producer;

* Executive producer.

A good project manager will need tools to manage tasks (Like a Kanban Board), as well as tools that promote

communication in the team (Chats, VoIP) and information repositories (having all information in the same place is

6 PROJECT MANAGEMENT BASICS AND TIPS 155

2D Game Development: From Zero To Hero

important!).

6.1.2 Game Designer

The game designer takes care of the game concept, usually (but not only!) working with really specific software,

usually provided by the programmers in the team (like specific level editors).
They design balanced game mechanics, manage the learning curve and take care of level design too.
Under the “Game Designer” term you can find different roles, among them:

* Level Designer;
e World Builder;
¢ Narrative Designer;

* Quest/Mission Designer.

A good game designer must know mathematics, some scripting and be able to use planning tools (again, our friendly

Kanban Board comes into play) as well as diagram drawing tools.

6.1.3 Writer

Writers are the ones who can help you give your game its own story, but also help with things that are outside the

mere game itself.

6 PROJECT MANAGEMENT BASICS AND TIPS 156

2D Game Development: From Zero To Hero

Some of their jobs include:

e Writing tutorial prompts;
* Writing narration;
* Writing dialogue;

* Writing pieces for the marketing of your game (sometimes known as “Copywriting”).

Under the term of “Writer” you can find more roles, like:

« Editor;
* Narrative Designer;

¢ Creative Writer.

A good writer must have good language skills, as well as creativity. They must be able to use planning programs

(like everyone, communication is important) as well as writing programs, like LibreOffice/OpenOffice Writer.

6.1.4 Developer

Logic and mathematics are the strong suit of programmers, the people who take care of making the game tick, they

can also have many specializations like:

* Problem Solver

* Game mechanics programmer;
* Controls programmer;

* Al developer;

* Visuals Programmer;

* Networking programmer;

¢ Physics programmer;

They must be familiar with IDEs and programming environments, as well as Source Control Tools (Like Git), knowledge

of game engines like Unity is preferred, but also tied to the kind of game that is made.

6 PROJECT MANAGEMENT BASICS AND TIPS 157

2D Game Development: From Zero To Hero

6.1.5 Visual Artist

In 2D games visual art is as important as in 3D games and good graphics can really boost the game’s quality greatly,

as bad graphics can break a game easily.
Among visual artists we can find:
Both in 2D and 3D games:

e 2D Artists;
* Animators;
* Environment Artists;
e Ul Artists/Designers;

* Conceptual Artists.
In 3D games:

¢ 3D Modelers;

e Texture Artists.

Visual Artists must be knowledgeable in the use of drawing programs, like Krita, GIMP or their commercial counter-

parts.

6 PROJECT MANAGEMENT BASICS AND TIPS 158

2D Game Development: From Zero To Hero

6.1.6 Sound Artist

As with graphics, sound and music can make or break a game. Sound artists may also be musicians, and their task

is to create audio that can be used in a video game, like sound effects, atmospheres or background music.
Under the umbrella of a sound artist, you can find:

¢ Audio Engineers;
* Game Composers;
e Music Mixers;

* Audio Programmers.

The knowledge of DAW (Digital Audio Workstation) software is fundamental, as well as knowing some so-called

“middlewares”, like FMOD. Another important bit of knowledge is being able to use Audio editors effectively.

6.1.7 Marketing/Public Relations Manager

Even the best game in the world will get no attention without someone who takes care of letting people know about

it. The marketing and public relations manager is responsible for promoting a game through various channels, from

specialized outlets to social media.

Their job include:

6 PROJECT MANAGEMENT BASICS AND TIPS 159

2D Game Development: From Zero To Hero

* developing and executing marketing campaigns;

» creating press releases and other promotional materials;

* managing social media accounts;

» working with journalists and influencers to publicize the game;

* publicizing the game on dedicated trade shows.

6.1.8 Tester

Probably the most important job in a game development team, testing needs people with high attention to detail,

as well as the ability to handle stress well.

Testers are able to find, describe and help you reproduce bugs and misbehaviors of your game.

6.2 Some general tips
6.2.1 Be careful of feature creep

The “it would be cool to...” trap, formally called “feature creep”, is a huge problem in all projects that involve any

amount of passion in them.

Saying “it would be cool to do <insert something here>: let's implement it!” can spiral out of control and make us
implement new features forever, keeping us from taking care of the basics that make a good game (or make a game

at all).

Try to stick to the basics first, and then eventually expand when your game is already released, if it's worth it: first
make it work, then make it work well and only in the end make it elegant.

6.2.2 On project duration

When it comes to project management, it's always tough to gauge the project duration, so it can prove useful to

remember the following phrase:

6 PROJECT MANAGEMENT BASICS AND TIPS 160

2D Game Development: From Zero To Hero

“If you think a project would last a month, you should add a month of time for unforeseen events. After that,
you should add another month for events that you really cannot foresee.”
This means that projects will last at least 3 times the time you foresee.

That may seem a lot like an exaggeration, but unforeseen events happen and they can have a huge impact on the
release of your game. It's better to err on the side of caution and even delay the release if something goes wrong.

Shigeru Miyamoto said the following:

I A delayed game is eventually good, a bad game is bad forever.
so maybe being “abundant” with your time estimates is not that wrong.

6.2.3 Brainstorming: the good, the bad and the ugly

Brainstorming is an activity that involves the design team writing down all the ideas they possibly can (without

caring about their quality yet).

This is a productive activity to perform at the beginning of the game development and design process, but it can be

a huge source of feature creep if done further down the line.

After the initial phase of brainstorming, the team analyzes the ideas and discards the impossible ones, followed by
the ones that are not “as good as they sounded at first”. The remaining ideas can come together to either form a

concept of a video game or some secondary component of it.

In short: brainstorming is a great activity for innovation, but since it's essentially “throwing stuff at a wall and see

what sticks”.

This activity can sometimes be either unproductive or “excessively productive”: in both cases we end up with nothing
of use in our hands.
6.2.4 On Sequels

In case your game becomes a hit, you will probably think about making a sequel: this is not inherently a bad thing,

but you need to remember some things.

When developing a sequel, you will have to live up to your previous game, as well as the expectations of the players,

and this becomes more and more difficult as the “successful sequels” go on.

Not only a sequel must be “as good or better” than its predecessor, but also it should add something to the original

game, as well as the established lore (if there is any).

Your time and resource management must be top-notch to be able to “bring more with less”, since your need for

resources cannot skyrocket without a very good reason.

Also don’t get caught in the some kind of “sequel disease” where you end up making a sequel just to “milk the

intellectual property”: you will end up ruining the whole series: it may end up being hated by the ones who played

6 PROJECT MANAGEMENT BASICS AND TIPS 161

2D Game Development: From Zero To Hero

the first games, and new players will be discouraged by a series that either overstays its welcome, or has one or

more low-quality sequels.

6.3 Common Errors and Pitfalls

When you are making a new game, it's easy to feel lost and “out of your comfort zone”, and that's okay! It's also

easy to fall into traps and pitfalls that can ruin your experience, here we take a look at the most common ones.

6.3.1 Losing motivation

Sometimes it can happen to lose motivation, usually due to having “too much ambition”: make sure you can develop
the kind of game you want to make, for instance leave multiplayer out of the question (multiplayer games are really
hard and network code can be a real pain to work on). It will just suck up development time, and it isn’'t that much

of an important feature anyway (and it can still be implemented later, like it happened in Stardew Valley).

Like in music, many people prefer “mediocrity” to “something great”, so don’t force yourself to innovate: do things

well enough and if the innovative idea comes, welcome it.

If you get tired, take a break, you're your own boss, and no one is behind you zapping you with a cattle prod: just
focus on making a good overall product and things will go well.

6.3.2 The “Side Project” pitfall

It happens: you have a ton of ideas for games of all kinds, and probably you'll start thinking:

I What's bad about a small “side project”? | want to change things up a bit...

You will end up having lots of “started projects” and nothing finished, your energy will deplete, things will become

confusing and you won’t know what game you’re working on anymore.

Instead, make a small concept for the new mechanic and try to implement it in your current game, you may find a

new mix that hasn’t been tried before, making your game that much more unique.

6.3.3 Making a game “in isolation”

While making a game you will need to gather some public for it, as well as create some hype around it: making a
game on your own without involving the public is a mistake that deprives you of a huge source of suggestions and

(constructive) criticism (as well as satisfaction, when you manage to get some people interested in your game).

Make your game public, on platforms like itch.io or IndieDB, get feedback and encouragement. Create trailers towards
the end of development, put them on YouTube or Vimeo and if you want to go all out, get in touch with the press (locally

first) and create hype around your product.

6 PROJECT MANAGEMENT BASICS AND TIPS 162

2D Game Development: From Zero To Hero

6.3.4 (Mis)Handling Criticism

Among all the other things that are happening, we also need to handle feedback from our “potential players”, and

this requires quite the mental effort, since we can’t make it “automatic”.

Not all criticism can be classified as “trolling”, and forging our game without listening to any feedback will only mean
that such game won’t be liked by as many people as we would like, maybe for a very simple problem that could

have been solved if only we listened to them.

At the same time, not all criticism is “useful” either, not classifying criticism as “trolling” does not mean that trolling
doesn’t exist, some people will take pride in ruining other people’s mood, either by being annoying and uselessly

critic, or by finding issues that don't actually exist.

The question you should ask yourself is simple:

I Is this criticism I’'m receiving constructive? Can it make my game better?

If the answer is no, then you may want to ignore such criticism, but if it is constructive, maybe you want to keep it

in consideration.

6.3.4.1 Misusing of the Digital Millennium Copyright Act

This is what could be considered the apex of mishandling criticism: the usage of DMCA takedowns to quash criticism

towards your game.

What follows is not legal advice. | am not a lawyer.
If you want to know more (as in quantity and quality of information), contact your

favorite lawyer.

Sadly, mostly in the YouTube ecosystem, DMCA takedowns are often used as a means to suppress criticism and
make video-reviews disappear from the Internet. Useless to say that this is potentially illegal as well as definitely

despicable.

Takedowns according to the DMCA are a tool at your disposal to deal with copyright infringements by people who
steal part (or the entirety of) your work, allowing (in the case of YouTube at the very least) to make the allegedly
infringing material. This should be used carefully and just after at the very least contacting the alleged infringer

privately, also because there is an exception to the copyright rule.

6.3.4.1.1 The Fair Use Doctrine

The so-called “Fair Use” is a limited exception to the copyright law that targets purposes of review, criticism, parody,

commentary, and news reporting, for instance.

The test for “Fair use” has four factors (according to 17 U.S.C. §107):

6 PROJECT MANAGEMENT BASICS AND TIPS 163

2D Game Development: From Zero To Hero

1. The Purpose and character of the use: if someone can demonstrate that their use advances knowledge
or the progress of arts through the addition of something new, it’s probably fair use. This usually is defined
by the question “is the work transformative enough?”

2. The nature of the copyrighted work: For instance, facts and ideas are not protected by copyright, but
only their particular expression or fixation is protected. Essentially you can’t really sue someone for making
a game very similar to yours (For instance making a 2D sidescrolling, run’n’gun platformer).

3. The amount and substantiality of the portion used in relation to the work as a whole: If someone
uses a small part (compared to the whole) of the work, and if that part is not really substantial, then it's
probably fair use.

4. The effect on the potential market for the copyrighted work: this defines if the widespread presence
of the “allegedly infringing use” can hinder on the copyright owner’s ability to exploit (earn from) their original

work.

There can also be some additional factors that may be considered, but these four factors above are usually enough

to decide over the presence (or absence) of fair use.

6.3.4.1.2 The “Review Case”

Let’s take a simple example: a video-review on our brand new video game, that takes some small pieces of gameplay
(totaling about 5 minutes), on video and comments on the gameplay, sound and graphics. A very common scenario

with (I hope) an unsurprising turnout.

Let’s take a look at the first point: the purpose is criticism, the review brings something new to the table (essentially

it is transformative): someone’s impression and comments about the commercial work.

Second point: the game is an interactive medium, while the review is non-interactive by nature, the mean of trans-

mission is different.

Third point: considering the average duration of 8 to 10 hours of a video game, 5 minutes of footage amounts for

around 0.8% to 1% of the total experience, that’s a laughable amount compared to the total experience.

Fourth Point: this is the one many people may get wrong. A review can have a huge effect on the market of a
copyrighted work (a bad score from a big reviewer can result in huge losses), but that’'s not really how the test

works. The fourth test can usually be answered by the following questions:

What's the probability that someone would buy (or enjoy for free) the work from the alleged infringer, instead

than from me (the copyright owner)?

This is called “being a direct market substitute” for the original work. The other question is:

I Is there a potential harm (other than market substitution) that can exist?

This usually is related to licensing markets. And here lies the final nail on the coffin: there is no direct market

substitution and courts recognize that certain kinds of market don’t negate fair use, and reviews are among those

6 PROJECT MANAGEMENT BASICS AND TIPS 164

2D Game Development: From Zero To Hero

kinds of market. In essence Copyright is not a shield against adverse criticism.

6.3.5 Not letting others test your game

”

This is a common mistake when you are focused on making the game: using your own skill as a “universal measure
for the world’s skill level. You may be an unknown master at 2D platformers, and as such what is “mildly difficult”

for you may be “utterly impossible” for the average player. Or the opposite.

Try to keep the challenge constant through the levels, applying the usual slight upwards curve in difficulty that most

games have (or check the section about difficulty curves for some ideas), and let others test your game.

A beta version with feedback capabilities (or just a beta version and a form or email address can do the trick too) is

pure gold when it comes to understanding what your players think about the game’s challenge level.

Remember: when a level is (perceived as unfairly) too hard, players will stop playing the game.

6.3.6 Being perfectionist

If you are called “perfectionist” by your friends, that should be a red flag in your game development process from

the very beginning.

Finding yourself honing the game over and over, allocating countless hours (that always feel as “not enough”) into

making the game “better”, will end up just sabotaging the development process itself.

Instead try to prefer a more “scientific approach”, where you study your game’s shortcomings (with the help of some
testers, or “friend-made-tester”), order them by their “effort vs improvement” ratio and start with those who require

the lowest effort compared to the improvements they bring.

a

Quality

3. After a certain point, we have
diminishing returns with increasing effort.

2. After studying the situation,
working on small things can give
great quality improvements
without much effort.

1. Understanding what needs to be improved
requires effort without giving much result

»

Effort

Figure 134: How to approach improvements on your game

6 PROJECT MANAGEMENT BASICS AND TIPS 165

2D Game Development: From Zero To Hero

You can see that you can get really good returns for relatively little effort, but if you're a perfectionist, you may want

to push forward and put more and more hours, with diminishing returns.
This means that when you have:

* Good Visuals and Good Audio
* Working Gameplay
* A challenge that lasts the test of time

e The testing phase completed

You have a complete product. Release it. Updating it is very easy these days, and maybe that will give you the

mental energy to undertake a new game. Maybe a sequel even?

6.3.7 Using the wrong engine

The game engine is one of the most important decisions you can take at the beginning of your game development
journey. Realizing that you used the wrong engine after months of development can be a huge setback, as well as

a “black hole” for your motivation.
Don’t trust market hype over an engine, and don’t trust the vendor’s promises either.

Does the game engine have the features you will need already? No? Then your money should stay where it is, and

you should look somewhere else.

If such engine’s producer is promising the feature you want in future, don’t trust it, that version may come, or it may

never come at all. If you bought the engine and such feature won’t ever be there, your money won’t come back.

6.4 Software Life Cycle Models

When talking about project management (in itself or in the broader field of Software Engineering) it is really useful

to talk about some guideline models that can be used to manage your project.

6.4.1 Iteration versus Increment

Before getting to the models, we need to discuss the difference between two terms that are often used interchange-

ably: “iteration” and “increment”.

Iteration is a non-deterministic process, during an iteration you are revisiting what you have already done, and
such revisiting can include an advancement or a regression. While iterating, you have no idea when you will finish

your job.

Increment is deterministic instead, with increments you are proceeding by additions over a base. Every increment
creates a “new base” for the next increments, and increments are numbered and limited, giving you an idea of when

you have to finish your job.

6 PROJECT MANAGEMENT BASICS AND TIPS 166

2D Game Development: From Zero To Hero

6.4.2 Waterfall Model

The Waterfall model, also known as “sequential model” is the simplest one to understand, easily repeatable (in

different projects) and is composed by phases that are strictly sequential, which means:

e There is no parallelism;
* There is no overlap between phases;

¢ When a phase is completed, you cannot go back to it.

Figure 135: Diagram of the waterfall life cycle model

This makes the Waterfall life cycle model extremely rigid, everything needs to be carefully analyzed and documented

(sometimes people define this model “document-driven”) and the coding is done only in its final phases.

In order to have a good result, this model requires quantifying some metrics (time spent, costs, ...) and such quan-

tification heavily relies on the experience of the project manager and the administrators.
6.4.3 Incremental Model

When a project of a certain size is involved, it's a bad idea to perform the so-called “big-bang integration” (inte-

grating all the components together). Such approach would make troubleshooting a nightmare, so it’s advisable to
incrementally integrate the components.

The Incremental Model allows to have a “high-level analysis and planning”, after that the team decides which features

should be implemented first. This way the most important features are ready as soon as possible and have more

time to become stable and integrate with the rest of the software.

High-level Planning

. .~ The number of iterations
e s, isfixed
.

0
,

K .
K s
b .
\
Release 1
Release 2
Production —,_’
. DT
B
B
B
K
L

K Release n
5

,

Figure 136: Diagram of the incremental life cycle model

This model can make use of strictly sequential phases (detail planning -> release -> detail planning -> release ...)

or introduce some parallelism (for instance planning and developing frontend and backend at the same time).

6 PROJECT MANAGEMENT BASICS AND TIPS 167

2D Game Development: From Zero To Hero

As seen from the diagram, the high-level analysis and planning are not repeated, instead the detail planning and

release cycle for a well-defined number of iterations, and on each iteration we will have a working release or proto-

type.

6.4.4 Evolutionary Model

It's not always possible to perfectly know the outline of a problem in advance, that's why the evolutionary model
was invented. Since needs tend to change with time, it's a good idea to maintain life cycles on different versions of

your software at the same time.

Initial

Specification —_— Version

1

High Level
Description

Intermediate
Versions

Development

4+——
Validation —> Final
— Version

Figure 137: High-level diagram of the evolutionary life cycle model

Adding a way to implement the feedback you get from your customers and stakeholders completes the micro-
managed part of the life cycle model, each time feedback and updates are implemented, a new version is released.

@7

A
A 4

A 4

Detail Planning
Production and Release

A 4

Incorporation Deliven
of Feedback Y
Customer Feedback

Figure 138: Diagram of the evolutionary life cycle model

6.4.5 Agile Software Development

Agile Software Development was born as a reaction to the excessive rigidity of the models we’ve seen so far. The
basic principles of Agile Software Development are presented at the http://agilemanifesto.org website, but we will

shortly discuss them below.

6 PROJECT MANAGEMENT BASICS AND TIPS 168

http://agilemanifesto.org

2D Game Development: From Zero To Hero

* Rigid rules are not good;

* A working software is more important than a comprehensive documentation;

» Seek collaboration with the stakeholder instead of trying to negotiate with them;
* Responding to change is better than following a plan

* Interactions and individuals are more important than processes and tools.

Obviously not everything that shines is actually gold, there are many detractors of the Agile model, bringing on the

table some criticism that should be noted:

* The agile way of working entails a really high degree of discipline from the team: the line between “flexibility”
and “complete lack of rules” is a thin one;

* Software without documentation is a liability more than an asset: commenting code is not enough - you need
to know (and let others know) the reason behind a certain choice;

* Without a plan, you can’t estimate risks and measure how the project is coming along;

* Responding to change can be good, but you need to be aware of costs and benefits such change and your

response entail.

6.4.5.1 User Stories

Agile models are based on “User Stories”, which are documents that describe the problem at hand.

Such documents are written by talking with the stakeholder/customer, listening to them, actively participating in

the discussion with them, proposing solutions and improvements actively.

A User Story also defines how we want to check that the software we are producing actually satisfies our customer.

6.4.5.2 Scrum

The term “scrum” is taken from the sport of American Football, where you have an action that is seemingly product

of chaos but that instead hides a strategy, rules and organization.

Let’s see some Scrum terminology:

* Product Backlog: This is essentially a “todo list” that keeps requirements and features our product must
have;

e Sprint: Iteration, where we choose what to do to create a so-called “useful increment” to our product. Each
Sprint lasts around 2 to 4 weeks and at the end of each sprint you obtain a version of your software that can
be potentially sold to the consumer;

* Sprint Backlog: Essentially another “todo list” that keeps the set of user stories that will be used for the

next sprint.

As seen from the terminology, the Scrum method is based on well-defined iterations (Sprints) and each sprint is

composed by the following phases:

6 PROJECT MANAGEMENT BASICS AND TIPS 169

2D Game Development: From Zero To Hero

* Sprint Planning: You gather the product backlog and eventually the previous sprint backlogs and decide
what to implement in the upcoming sprint;

* Daily Scrum: A daily stand-up meeting that lasts around 15 minutes where a check on the daily progress is
done;

* Sprint Review: After the sprint is completed, we have the verification and validation of the products of the
sprint (both software and documents);

* Sprint Retrospective: A quality control on the sprint itself is done, allowing for continuous improvement

over the way of working.

6.4.5.2.1 Criticisms to the Scrum approach

The Scrum approach can quickly become chaotic if User Stories and Backlogs are not well kept and clear. Also, no
matter how short it can be, the Daily Scrum is still an invasive practice that interrupts the workflow and requires

everyone to be present and ready.

6.4.5.3 Kanban

Kanban is an Agile Development approach taken by the scheduling system used for lean and just-in-time manufac-

turing implemented at Toyota.

The base of Kanban is the “Kanban Board” (sometimes shortened as “Kanboard”), where plates (also called “cards”

or “tickets”) are moved through swimlanes that can represent:

* The status of the card (To Do, Doing, Testing, Done)
¢ The Kind of Work (Frontend, Backend, Database, ...)

* The team that is taking care of the work

The board helps with organization and gives a high-level view of the work status.

Backlog In Progress Testing Blocked

Implement New 8ugs

Figure 139: Example of a Kanban Board

6.4.5.4 ScrumBan

ScrumBan is a hybrid approach between Scrum and Kanban, mixing the Daily Scrum and Sprint Approach with the

Kanban Board.

6 PROJECT MANAGEMENT BASICS AND TIPS 170

2D Game Development: From Zero To Hero

This approach is usually used during migration from a Scrum-Based approach to a purely Kanban-based approach.

6.4.6 Lean Development

Lean development tries to bring the principles of lean manufacturing into software development. The basis of lean

development is divided in 7 principles:

* Remove Waste: “waste” can be partial work, useless features, waiting, defects, work changing hands...

* Amplify Learning: coding is seen as a learning process and different ideas should be tested on the field,
giving great importance to the learning process;

* Decide late: the later you take decisions, the more assumptions and predictions are replaced with facts, Also
strong commitments should happen as late as possible, as they will make the system less flexible;

» Deliver early: technology evolves rapidly, and the one that survives is the fastest. If you can deliver your
product free from defects as soon as possible you will get feedback quickly, and get to the next iteration
sooner;

* Empower the team: managers are taught to listen to the developers, as well as provide suggestions;

* Build integrity in: the components of the system should work well together and give a cohesive experience,
giving the customer and impression of integrity;

* Optimize the whole: optimization is done by splitting big tasks into smaller ones which helps finding and

eliminating the cause of defects.

6.4.7 Where to go from here

Obviously the models presented are not set in stone, but are “best practices” that have been proven to help with

project management, and not even all of them.

Nothing stops you from taking elements of a model and implement them into another model. For example you could

use an Evolutionary Model with a Kanban board used to manage the single increment.

6.5 Version Control

When it comes to managing any resource that is important to the development process of a software, it is vitally

important that a version control system is put in place to manage such resources.

Code is not the only thing that we may want to keep under versioning, but also documentation can be subject to it.

Version Control Systems (VCS) allow you to keep track of edits in your code and documents, know (and blame) users
for certain changes and eventually revert such changes when necessary. They also help saving on bandwidth by
uploading only the differences between commits and make your development environment more robust (for instance,

by decentralizing the code repositories).

The most used Version Control system used in coding is Git, it's decentralized and works extremely well for tracking
text-based files, like code or documentation, but thanks to the LFS extension it is possible for it to handle large files

efficiently.

6 PROJECT MANAGEMENT BASICS AND TIPS 171

2D Game Development: From Zero To Hero

,

no char and/or "git commit -a")

Figure 140: An example screen from Git, a version control system

Other used version control systems are Mercurial and SVN (subversion).

Another useful feature of many version control systems are remote sources, which allow you to upload and synchro-
nize your repositories with a remote location (like GitHub, GitLab or BitBucket for instance) and have it safe on the

cloud, where safety by redundancy is most surely ensured.

6.6 Metrics and dashboards

During development you need to keep an eye on the quality of your project, that's when you need a project dash-
board: but before that, you need to decide what your quality metrics are, that means the measurements that

define if your project is “up to par” with what you expect or not.

6.6.1 SLOC

This is probably the simplest metric out there: The “Source Line of Code” (SLOC). It is used to measure the size of a

program by counting its lines of code. Once Bill Gates said the following:

I Measuring programming progress by lines of code is like measuring aircraft building progress by weight.

An aircraft must be lightweight and robust, and being heavier than necessary will stop it from flying. The same

reasoning should be applied here: a longer source code doesn’'t mean a better product.

It is important to strike a balance between “readability” and “brevity”: your code should be short, but being source

code, it is still meant for humans to read, so readability matters more than brevity.

Usually the SLOC metric is used to give a “order of magnitude” impression of the program: considering 2 programs
that do exactly the same thing, one is 10.000 lines of code, the other one is 100.000, you may start to suspect that

the bigger program is more (probably uselessly) complex and less maintainable.

6.6.2 Cyclomatic Complexity

More precisely called “McCabe’s Cyclomatic Complexity”, this metric defines the number of linearly independent
paths through a program’s source code: the higher the metric, the higher is the number of paths a piece of code

can take in its elaboration.

This means that a higher number of paths takes into account a higher number of conditions and decisions and when

such number becomes too high, the code becomes hard to maintain.

6 PROJECT MANAGEMENT BASICS AND TIPS 172

2D Game Development: From Zero To Hero

The maximum complexity suggested is 10, although sometimes it's good to relax such metric to a maximum of 15.
When the cyclomatic complexity becomes higher than the maximum value, it is suggested to split the module into

smaller, more maintainable modules.
Your IDE, if advanced enough, should already be able to warn you of a high cyclomatic complexity.

Pitfall Warning!

’ far from a “silver bullet” that will suit all your needs, but as all other metrics, it can

Be mindful that cyclomatic complexity may have issues of “over-estimation” or “under-

[) estimation”, depending on a case-by-case basis. McCabe’s cyclomatic complexity is

give a pointer over where refactoring may be necessary.

6.6.2.1 How cyclomatic complexity is calculated

Advanced Wizardry!

This section contains the technical explanation on how to calculate cyclomatic com-

plexity. If you're not interested in this, feel free to gloss over this section.

As people say, an example is worth a thousand words, so let’s take the following UML activity diagram, that represents

a simple program (I made it a bit more complex for the sake of demonstration).

®

Figure 141: UML of the program which we'll calculate the cyclomatic complexity of

6 PROJECT MANAGEMENT BASICS AND TIPS 173

2D Game Development: From Zero To Hero

First of all, we need to convert it into the corresponding flow diagram, which usually means eliminating the start

nodes and merge nodes used by UML. The result should look something like the following:

a=input()

b='even' b='odd'

v

return b

Figure 142: Flow diagram of the program we’ll calculate the cyclomatic complexity of

Now we need to count 3 things:

e The number of “nodes”: that is the number of boxes and diamonds in our flow diagram. In our case it is 7.

e The number of “edges”: that is the number of arrows that connect the nodes in our flow diagram. In our case
it is 8.

¢ The number of “exit points”: usually that is the number of stop nodes in our UML diagram, in our flow diagram

it's the number of return statements. In our case it is 1.
Now we need to apply the following formula: C = E — N +2- P.

This formula can be explained as follows:

Cyclomatic Complexity = FEdges — Nodes + 2 - Exit Points

Inourcasewehave: C =8 —-7+4+2-1=3

Usually a complexity lower than 15 is considered OK, but also the lower the better.

6 PROJECT MANAGEMENT BASICS AND TIPS 174

2D Game Development: From Zero To Hero

6.6.3 Code Coverage

When you have a test suite, you may already be thinking about a metric that tells you how much of your code is
tested. Well, here it is: the code coverage metric tells you what percentage of your code base has been run when

executing a test suite.

That is both the useful and damaging part of this metric: code coverage doesn’t tell you how well your code is
tested, just how much code was executed, so it's easy to incur into what | like to call “incidental coverage”: the

code coverage presents a higher value, when the code is merely “executed” and not thoroughly “tested”.
Code coverage is split in many “sub-sets”, like:

+ Statement Coverage: how many statements of the program are executed;
* Branch Coverage: defines which branches (as in portions of the if/else and “switch” statements) are exe-
cuted;

¢ Function Coverage: how many functions or subroutines are called.
This is also why it's better to prepare unit tests first, and delay the integration tests for a while.

To know more about those terms, head to the testing section.

6.6.4 Code Smells

Code Smells is a blanket term representing all the common (and thus known) mistakes done in a certain programming

language, as well as bad practices that can be fixed more or less easily.

Some of these smells can be automatically detected by static analysis programs (sometimes called Linters), others
may require dynamic execution, but all code smells should be solved at their root, since they usually entail a deeper

problem.
Among code smells we find:

* Duplicated Code;

* Uncontrolled Side Effects;
¢ Mutating Variables;

¢ God Objects;

* Long Methods;

* Excessively long (and thus complex) lines of code.

6.6.5 Coding Style infractions

When you are collaborating with someone, it is absolutely vital to enforce a coding style, so that everyone in the

team is able to look at everyone else’s code without having to put too much effort into it.

Coding style can be enforced via static analysis tools, when properly configured.

6 PROJECT MANAGEMENT BASICS AND TIPS 175

2D Game Development: From Zero To Hero

Counting (automatically) the number of coding style infractions can help you estimate how much effort working on

the code is necessary, thus you would be able to foresee slowdowns in the development process.

6.6.6 Depth of Inheritance

Some people say that inheritance is evil and should be avoided, some other say it's good. As with all things, in
medio stat virtus (virtue stands in the middle), sometimes inheritance is better left where it is, other times its usage

is necessary for things to make sense.

The depth of inheritance metric tells us how deep the inheritance hierarchy is, thus this metric will tell the us the
strength of one of the possible dependency types. The deeper the inheritance, the more dependencies we have,

which means that we have more classes that, if edited, will change the behavior of the “children classes”.

It's better having a short inheritance depth, (although it's not necessarily wrong) having a longer chain of dependen-
cies might mean we have a structural problem, where some classes are “too generic” and at the top of the hierarchy
we have some kind of “universal object”.

6.6.7 Number of methods / fields / variables

Let’s talk numbers: having too many methods or fields in a class can be an indicator of a so-called “god object”:
an object that has too many responsibilities under its wing (does too many things), this is a breach of the single

responsibility principle and should be avoided.

We can fix this by splitting the class into smaller classes, each with its own single responsibility.

A high number of local variables instead may point to a complexity issue: your algorithm may be more complex than
needed, or needs to be split into different functions.

6.6.8 Number of parameters

This metric is specific for functions, when a function has a lot of parameters, it’s harder to call and harder to under-

stand. Functions should have no more than 5 parameters in most cases, more and it will be complex.

Some automated tools in your IDE may be able to warn you in case methods and functions have too many parame-

ters.

To solve this issue, you may need to review the function (maybe it has too many responsibilities?) or pass a so-called

“complex structure” to it (thus merging all the parameters into one).

6.6.9 Other metrics

The metrics listed above are not the only ones available to you, some IDEs have aggregated metrics (like the “main-

tainability index” in Visual Studio), while there may be other metrics you want to measure, some follow:

* Lead Time: Time elapsed between the start and end of a process (may be a ticket, or a task);
« MTBF: (Mean Time Before Failure) represents the mean time before the software crashes;

¢ Crash Rate: The number of times a software crashes, over the number of times it’s used.

6 PROJECT MANAGEMENT BASICS AND TIPS 176

2D Game Development: From Zero To Hero

6 PROJECT MANAGEMENT BASICS AND TIPS 177

2D Game Development: From Zero To Hero

7 Writing a Game Design Document

If you don’t know where you are going. How can you expect to get there?

Basil S. Walsh
One of the most discussed things in the world of Game Development is the so-called “GDD” or “Game Design

Document”. Some say it's a thing of the past, others swear by it, others are not really swayed by its existence.

Being an important piece of any software development process, in this book we will talk about the GDD in a more

flexible way.

7.1 What is a Game Design Document

The Game Design Document is a Body Of Knowledge that contains everything that is your game, and it can take

many forms, such as:

* A formal design document;
* A Wikig;
* A Kanboardy;;

* A collection of various files, including spreadsheets.

The most important thing about the GDD is that it contains all the details about your game in a centralized and

possibly easy-to-access place.

It is not a technical document, but mostly a design document, technical matters should be moved to a dedicated

“Technical Design Document”.

7.2 Possible sections of a Game Design Document

Each game can have its own attributes, so each Game Design Document can be different, here we will present some
of the most common sections you can include in your own Game Design Document.

7.2.1 Project Description

This section is used to give the reader a quick description of the game, its genre (RPG, FPS, Puzzle,...), the type of
demographic it covers (casual, hardcore, ...). Additional information that is believed to be important to have a basic

understanding of the game can be put here.
This section should not be longer than a couple paragraphs.

A possible excerpt of a description could be the following:

This game design document describes the details for a 2D side scrolling platformer game where the player
makes use of mechanics based on using arrows as platforms to get to the end of the level.
The game will feature a story based on the central America ancient culture (Mayan, Aztec, ...).

The name is not defined yet but the candidate names are:

7 WRITING A GAME DESIGN DOCUMENT 178

2D Game Development: From Zero To Hero

7.2.2 Characters

If your game involves a story, you need to introduce your characters first, so that everything that follows will be

clear.

A possible excerpt of a characters list can be the following:

Ohm is the main character, part of the group called “The Resistance” and fights for restoring the electrical
order in the circuit world.

Fad is the main side character, last survivor and heir of the whole knowledge of “The Capacitance” group.
Its main job is giving technical assistance to Ohm.

Gen. E. Rator is the main antagonist, general of “The Reactance” movement, which wants to conquer the

circuit world.

This can be a nice place where to put some character artwork.

If your game does not include a story, you can just avoid inserting this section altogether.

7.2.3 Storyline

After introducing the characters, it's time to talk about the events that will happen in the game.

An example of story excerpt can be the one below:

It has been 500 mega-ticks that the evil Rator and the reactance has come to power, bringing a new era of
darkness into the circuit world.

After countless antics by the evil reactance members, part of the circuit world’s population united into what
is called “The Resistance”.

Strong of thousands of members and the collaboration of the Capacitance, the resistance launched an attack
against the evil reactance empire, but the empire stroke back with a carpet surcharge attack, decimating
the resistance and leaving only few survivors that will be tasked to rebuild the resistance and free the world
from the reactance’s evil influence.

This is when a small child, and their parents were found. The child’s name, Ohm, sounded prophetic of a
better future of the resistance.

And this is where our story begins.

As with the Characters section, if your game does not include a story, you can just skip this section.

7.2.3.1 The theme

When people read the design document, it is fundamental that the game’s theme is quickly understood: it can be
a comedy-based story, or a game about hardships and fighting for a better future, or maybe it is a purely fantastic

game based on ancient history...

Here is a quick example:

7 WRITING A GAME DESIGN DOCUMENT 179

2D Game Development: From Zero To Hero

This is a game about fighting for a better future, dealing with hardships and the deep sadness you face when
you are living in a world on the brink of ruin.
This game should still underline the happiness of small victories, and give a sense of “coziness” in such small

things, even though the world can feel cold.
If you feel that this section is not relevant for your game, you can skip it.

7.2.3.2 Progression

After defining the story, you should take care of describing how the story progresses as the player furthers their

experience in a high-level fashion.

An example:

The game starts with an intro where the ruined city is shown to the player and the protagonist receives their
magic staff that will accompany them through the game.

The first levels are a basic tutorial on movement, where the shaman teaches the player the basic movement
patterns as well as the first mechanic: staff boosting. Combat mechanics are taught as well.

After the tutorial has been completed, the player advances to the first real game area: The stone jungle.

7.2.4 Levels and Environments

In this section we will define how levels are constructed and what mechanics they will entail, in detail.

We can see a possible example here:

The First Level (Tutorial) is based in a medieval-like (but adapted to the center-America theme) training camp,
outside, where the player needs to learn jumping, movement and fight straw puppets. At the end of the basic
fighting and movement training, the player is introduced to staff boosting which is used to first jump to a
ledge that is too high for a normal jump, and then the mechanic is used to boost towards an area too far

forward to reach without boosting.

Some level artwork can be included in this section, to further define how the levels will look and feel.

7.2.5 Gameplay

This section will be used to describe your gameplay. This section can become really long, but do not fear, as you

can split it in meaningful sections to help with organization and searching.

7.2.5.1 Goals

I Why is the player playing your game?

7 WRITING A GAME DESIGN DOCUMENT 180

2D Game Development: From Zero To Hero

This question should be answered in this section. Here you insert the goals of your game, both long and short term.

An example could be the following:

Long Term Goal: Stop the great circuit world war
Optional Long Term Goal: Restore the circuit world to its former glory.
Short Term Goals:

* Find the key to the exit

* Neutralize Enemies

¢ Get to the next level

7.2.5.2 Game Mechanics

In this section, you describe the core game mechanics that characterize the game, extensively. There are countless

resource on how to describe game mechanics, but we’ll try to add an example here below.

The game will play in the style of the well-known match-3 games. Each match of 3 items will add some points
to the score, and new items will “fall” from a randomly chosen direction every time.

Every time an “L” or a “T” match is performed, a special item of a random color will be generated, when a
match including this item is made, all the items in the same row and column will be deleted and bonuses will
be awarded.

Every time a match with 4 items in a row is performed, a special item of a random color will be generated,
when a match including such item is made, all items in a 3x3 grid centered on the item will be deleted and
bonuses will be awarded.

Every time a match with 5 items in a row is performed, a special uncolored item will be generated, this can
be used as a “wildcard” for any kind of match.

In case the 5-item special is matched with any other special item, the whole game board will be wiped and

a bonus will be awarded.

7.2.5.3 Skills

Here you will describe the skills that are needed by the users in order to be able to play (and master) your game.

This will be useful to assess your game design and eventually find if there are some requirements that are too high

for your target audience; for instance asking a small child to do advanced resource management could be a problem.

This will also help deciding what the best hardware to use your game on could be, for instance if your game requires

precise inputs for platforming then touch screens may not be the best option.

Here’s an example of such section:

7 WRITING A GAME DESIGN DOCUMENT 181

2D Game Development: From Zero To Hero

The user will need the following skills to be able to play the game effectively:
* Pressing Keyboard Buttons or Joypad Buttons
* Puzzle Solving (for the “good ending” overarching puzzle)

* Timing inputs well (for the sections with many obstacles)

7.2.5.4 Items/Powerups

After describing the basic game mechanics and the skills the user needs to master to be able to play the game

effectively, you can use this section to describe the items and powerups that can be used to alter the core gameplay.

For example:

The player can touch a globular light powerup to gain invincibility, every enemy that will touch the player
will get automatically killed. The powerup duration is 15 seconds.
Red (incendiary) arrows can be collected through the levels, they can get shot and as soon as they touch the

ground or an enemy, the burst into flames, similarly to a match.

In this section you describe all items that can be either found or bought from an in-game store or also items derived
from micro-transactions. In-game currency acquisition should be mentioned here too, but further detailed in the

monetization section.

7.2.5.5 Difficulty Management and Progression

This section can be used to manage how the game gets harder and how the player can react to it. This will expand

on game mechanics like leveling and gear.

This section is by its own nature quite subjective, but describing how the game progresses helps a lot during the

tighter parts of development.

Below a possible example of this section:

The game will become harder by presenting tougher enemies, with more armor, Health Points and attack. To
overcome this difficulty shift, the player will have to create defense strategy and improve their dodging, as
well as leveling up their statistics and buy better gear from the towns’ shops.

In the later levels, enemies will start dodging too, and will also be faster. The player will need to improve
their own speed statistic to avoid being left behind or “kited” by fast enemies.

As the game progresses, the player will need to acquire heavy weapons to deal with bigger bosses, as well

as some more efficient ranged weapons to counteract ranged enemies.

This section is good if you want to talk about unlocking new missions/maps/levels too.

7 WRITING A GAME DESIGN DOCUMENT 182

2D Game Development: From Zero To Hero

7.2.5.6 Losing Conditions

Many times we focus so much on how the player will get to the end of the game that we absolutely forget how the

player can not get to the end of the game.

Losing conditions must be listed and have the same importance of the winning conditions, since they add to the

challenge of the game itself.

A possible example of how a “losing conditions” section could be written is the following:

The game can be lost in the following ways:
¢ Losing all the lives and not “continuing” (Game Over)

* Not finding all the Crystal Oscillators (Bad Ending)

An interesting idea could be having an “endings” section inside your game, where all endings (both good, bad and

neutral) are listed, encouraging the player to pull themselves out from the “losing condition” that is a bad ending.

7.2.6 Graphic Style and Art

Here we describe the ideas on how the game will look like. Describing the graphic style and medium.

Here is a possible example of the game:

This is a 2D side scroller with a dark theme, the graphics should look gloomy and very reminiscing of a circuit
board.
The graphical medium should be medium-resolution pixel art, allowing the player’s imagination to “fill in” the

graphics and allowing to maintain a “classic” and “arcade” feeling.

7.2.7 Sound and Music

Sadly, in way too many games, music and sound is an afterthought. A good soundtrack and sound effect can really

improve the immersion, even in the simplest of games.

In this section we can describe in detail everything about Music and Sound Effects, and if the section becomes hard

to manage, splitting it in different sub-sections could help organization.

Music should be based on the glitch-hop style, to complement the electronic theme. 8 or 16-bit style sounds
inside the score are preferable to modern high-quality samples.

Sound effects should appeal to the 8 or 16-bit era.

Lots of sound effects should be used to give the user positive feedback when using a lever to open a new

part of the level, and Extra Lives/1UP should have a jingle that overrides the main music.

7 WRITING A GAME DESIGN DOCUMENT 183

2D Game Development: From Zero To Hero

7.2.8 User Interface

In this section we will describe everything that concerns the User Interface: menus, HUD, inventories and everything

that will contribute to build the user experience that is not strictly tied to the gameplay.

This is especially important in games that make heavy use of menus, like turn-based strategy games or survival

games where inventory management can be fundamental.

Let’s see an example of how this section can be written:

The game will feature a cyberpunk-style main menu, looking a lot like an old green-phosphor terminal but
with a touch of futurism involved. The game logo should be visible on the left side, after a careful conversion
into pixel-art. On the right, we see a list of buttons that remind old terminal-based GUIs. On the bottom of
the screen, there should be an animated terminal input, for added effect.
Every time a menu item is highlighted or hovered by the mouse, the terminal input will animate and write a
command that will tie to the selected menu voice, such as:

e Continue Game: ./initiate_mission.bin -r

e Start Game: ./initiate_mission.bin --new

* Options: rlkernel_comm.bin --show_settings

e EXxit: systemcontrol.bin --shutdown
The HUD display should remind a terminal, but in a more portable fashion, to better go with the “portability”

of a wrist-based device.

It's a good idea to add some mock designs of the menu in this section too.

7.2.9 Game Controls

In this section you insert everything that concerns the way the game controls, eventually including special periph-

erals that may be used.

This will help you focusing on better implementing the input system and limit your choices to what is feasible and

useful for your project, instead of just going by instinct.

Below, a possible way to write such section

The game will control mainly via mouse and keyboard, using the mouse to aim the weapon and shoot and
keyboard for moving the character.

Alternatively, it’s possible to connect a twin-stick gamepad, where the right stick moves the weapon crosshair,
while the left stick is used to move the character, one of the back triggers of the gamepad can be configured
to shoot.

If the gamepad is used, there will be a form of aim assistance can be enabled to make the game more

accessible to gamepad users.

7 WRITING A GAME DESIGN DOCUMENT 184

2D Game Development: From Zero To Hero

7.2.10 Accessibility Options

Here you can add all the options that are used to allow more people to access your game, in more ways than you

think.

Below, we can see an example of many accessibility options in a possible game.

The game will include a “colorblind mode”, allowing the colors to be colorblind-friendly: such mode will
include 3 options: Deuteranopia, Tritanopia and Monochromacy.

Additionally, the game will include an option to disable flashing lights, making the game a bit more friendly
for people with photosensitivity.

The game will support “aim assistance”, making the crosshair snap onto the enemy found within a certain
distance from the crosshair.

In order to assist people who have issues with the tough platforming and reaction times involved, we will

include the possibility to play the game at 75%, 50% and 25% speed.

7.2.11 Tools

This section is very useful for team coordination, as having the same toolkit prevents most of the “works for me”
situations, where the game works well for a tester/developer while it either crashes or doesn’t work correctly for

others.

This section is very useful in case we want to include new people in our team and quickly integrate them into the

project.

In this section we should describe our toolkit, possibly with version numbers included (which help reducing incom-

patibilities), as well as libraries and frameworks. The section should follow the trace below:

The tools and frameworks used to develop the game are the following:
Pixel Art Drawing: Aseprite 1.2.13

IDE: Eclipse 2019-09

Music Composition: Linux Multimedia Studio (LMMS) 1.2.1

Map and level design: Tiled 1.3.1

Framework: SFML 2.5.1

Version Control: Git 2.24.0 and GitLab

7.2.12 Marketing

This section allows you to decide how to market the game and have a better long-term plan on how to market your

game to your players.

Carefully selecting and writing down your target platforms and audience allows you to avoid going off topic when it

comes to your game.

7 WRITING A GAME DESIGN DOCUMENT 185

2D Game Development: From Zero To Hero

7.2.12.1 Target Audience

Knowing who is your target audience helps you better suit the game towards the audience that you are actually

targeting.

Here is an example of this section:

The target audience is the following:
Age: 15 years and older
Gender: Everyone

Target players: Hardcore 2D platformer fans

7.2.12.2 Available Platforms

Here you describe the launch platforms, as well as the platforms that will come into the picture after the game

launched. This will help long term organization.

Here is an example of how this section could look:

Initially the game will be released on the following platforms:
* PC
* Playstation 4
After launch, we will work on the following ports:
* Nintendo Switch
» XBox 360
After working on all the ports, we may consider porting the game to mobile platforms like:
* Android 9.0 +
e i0S 11.0 +

7.2.12.3 Monetization

In this optional section you can define your plans for the ways you will approach releasing the game as well as

additional monetization strategies for your game.

For example:

The game will not feature in-game purchases.

Monetization efforts will be focused on selling the game itself at a full “indie price” and further monetization
will take place via substantial Downloadable Content Expansions (DLC)

The eventual mobile versions will be given away for free, with advertisements integrated between levels. It

is possible for the user to buy a low-price paid version to avoid seeing the advertisements.

7 WRITING A GAME DESIGN DOCUMENT 186

2D Game Development: From Zero To Hero

7.2.12.4 Internationalization and Localization

Internationalization and Localization are a matter that can make or break your game, when it comes to marketing

your game in foreign countries.

Due to political and cultural reasons, for instance you shouldn’t use flags to identify languages. People from territories
inside a certain country may not be well accepting of seeing their language represented by the flag of their political

adversaries.

Another example could be the following: if your main character is represented by a cup of coffee, your game could

be banned somewhere as a “drug advertisement”.
This brings home the difference between “Internationalization” and “Localization”:

Internationalization Making something accessible across different countries without major changes to its content

Localization Making something accessible across different countries, considering the target country’s culture.

We can see a possible example of this section below:

The game will initially be distributed in the following languages:
¢ English
* ltalian
After the first release, there will be an update to include:
* Spanish
* German

* French

7.2.13 Other/Random lIdeas

This is another optional section where you can use as a “idea bin”, where you can put everything that you’'re not

sure will ever make its way in the game. This will help keeping your ideas on paper, so you won't ever forget them.

We can see a small example here:

Some random ideas:
* User-made levels
* Achievements
» Multiplayer Cooperative Mode

* Multiplayer Competitive Mode

7.3 Where to go from here

This chapter represents only a guideline on what a Game Design Document can be, feel free to remove any sections

that don’t apply to your current project as well as adding new ones that are pertinent to it.

7 WRITING A GAME DESIGN DOCUMENT 187

2D Game Development: From Zero To Hero

A Game Design Document is a Body of Knowledge that will accompany you throughout the whole game development

process and it will be the most helpful if you are comfortable with it and it is shaped to serve you.

7 WRITING A GAME DESIGN DOCUMENT 188

Part 3: Game Development Basics

2D Game Development: From Zero To Hero

8 The Game Loop

All loops are infinite ones for faulty RAM modules.

Anonymous

8.1 The Input-Update-Draw Abstraction

Animations and movies are an illusion, and so are games. Games and movies show still images tens of times per

second, giving us the illusion of movement.
Any game and its menus can be abstracted into 3 main operations that are performed one after the other, in a loop:

1) Process the user input
2) Update the world (or menu) status

3) Display (Draw) the updated world (or again, menu) to the screen

We call such abstraction the “game loop”.

[Preparation Work]

Game LoopJ

Process Input

[Update Internal Game State] A
S

@

game is still running?

ye

no

Clean up

Figure 143: UML Diagram of the input-update-draw abstraction

8 THE GAME LOOP 190

2D Game Development: From Zero To Hero

So a pseudocode implementation of such loop would be something like the following:

Listing 32: Game Loop example

1 function game (){

2 bool game_is_running = True;
3 while (game_is_running){

4 process_user_input();

5 update_world();

6 draw();

7 3

s }

This abstraction will become really useful when dealing with many rows of code and keeping it neatly organized.

8.2 Input
8.2.1 Events vs Real Time Input

Some frameworks may be able to further abstract how they process input by giving an APl that allows to make

use of events.

Most of the time, events will be put in a queue that will be processed separately. This way it’s easier to program how
to react to each event and keep our code neatly organized. The downside is that the performance of an event-driven
input processing is directly tied to how many events are triggered: the more events are triggered, the longer the

wait may be before we get to our processed input.

This usually depends on the implementation of the event queue: an event queue is less wasteful in terms of resources
and allows for less coupled code, but the queue could be cluttered with events we’re not interested in (for instance
mouse movement events in a game that uses only keyboard for controls) so we need to take the time to configure

our event handler to ignore certain events when not necessary.

A well-configured event-based input system is the most efficient way of doing

things, allowing code to be executed only when necessary.

On the opposite side, we have so-called “real-time input”, where at a certain point of our update routine, we check for
the instantaneous status of the input peripherals and process it immediately. This allows for a faster, more reactive
code and to apply some different logic (for instance pressing left and right on the keyboard can be coded to make
the character stop). Besides being more immediate, this system shares a lot of traits with “polling” which can be

performance-heavy, as well as inducing some undesired code coupling.

Again, a well-implemented and well-configured event-based system should feel no different from real-time input,

with the advantage of having better performance and having less code coupling.

8 THE GAME LOOP 191

2D Game Development: From Zero To Hero

8.3 Timing your loop

When it comes to anything that remotely relates to physics (that includes video games), we need to set the relation

to time in our loop. There are many ways to set our delta time (or time steps), we'll see some of the most common.

8.3.1 What is a time step

A time step (or delta time) is a number that will define “how much time passed” between two “snapshots” of our
world (remember, the world is updating and showing in discrete intervals, giving the illusion of movement). This

number will allow us to make our loop more flexible and react better to the changes of load and machines.

8.3.2 Fixed Time Steps

The first and simplest way is to use a fixed time step, our delta time is fixed to a certain number, which makes the

simulation easier to calculate but also makes some heavy assumptions:

* \ertical Synchronization is active in the game

* The PC is powerful enough to make our game work well, 100% of the time

1.

An example of fixed time step loop can be the following (assuming 60 frames per second or dt = 60):

Listing 33: Game loop with fixed timesteps

1 float dt = 1.0/60.0;

2 bool game_is_running = True;

4 while (game_is_running){

5 process_user_input();
6 update_world(dt);

7 draw();

8 }

Everything is great, until our computer starts slowing down (high load or just not enough horsepower), in that case

the game will slow down.

This means that every time the computer slows down, even for a microsecond, the game will slow down too, which

can be annoying.

A similar problem can apply between different computers: if computer A can run the
game at 30fps maximum, while computer B will run at 120fps (and we don’t account for

that), using fixed timesteps the game will run 4 times as fast on computer B.

8 THE GAME LOOP 192

2D Game Development: From Zero To Hero

8.3.3 Variable Time Steps

A way to limit the issues given by a fixed time step approach is to make use of variable time steps, which are simple

in theory, but can prove hard to manage.

The secret is measuring how much time passed between the last frame and the current frame, and use that value

to update our world.

An example in pseudocode could be the following:

Listing 34: Game loop with variable time steps

1 bool game_is_running = True;

3 // We initialize our dt at 1/60th of a second for the first loop
4+ float dt = 1.0/60.0;

¢ while (game_is_running){

7 // We assume that get_system_time() returns the system time in milliseconds
8 float begin = get_system_time();

9 process_user_input();

10 update_world(dt);

1 draw();

12 float end = get_system_time();

13 // We update our dt

14 dt = end - begin;

15}

This allows to smooth the possible lag spikes, even allowing us to disable Vertical Sync and have a bit less input lag,

but this approach has some drawbacks too.

Since the delta time now depends on the speed of the game, the game can “catch up” in case of slowdowns; that
can result in a slightly different feeling, depending on the framerate, but if there is a really bad slowdown dt can

become really big and break our simulation, and collision detection will probably be the first victim.

Also this method can be a bit harder to manage, since every movement will have to be scaled with dt.

8.3.4 Semi-fixed Time Steps

This is a special case, where we set an upper limit for our time steps and let the update loop execute as fast as

possible. This way we can still simulate the world in a somewhat reliable way, avoiding the dangers of higher spikes.

A semi-fixed time step approach is the following (assuming 60 fps or dt = &):

Listing 35: Game loop with Semi-Fixed time steps

1 float dt = 1.0/60.0;

2 bool game_is_running = True;

4 // We bootstrap frametime for 1/60th of a second for the first frame

8 THE GAME LOOP 193

2D Game Development: From Zero To Hero

s float frametime = 1.0/60.0;

7 while (game_is_running){

8 // We assume that get_system_time() returns the system time in milliseconds
9 float begin = get_system_time();

10

1 while (frametime > 0.0){

12 float deltaTime = min(dt, frametime);
13 process_user_input();

14 update_world(deltaTime);

15 frametime = frametime - deltaTime;

16 3

17 draw();

18 float end = get_system_time();

19 // We memorize how long this frame lasted
20 frametime = end - begin;

2}

This way, if the loop is running too slow, the game will slow down and the simulation won't blow up. The main
disadvantage of this approach is that we're taking more update steps for each draw step, which is fine if drawing
takes more than updating the world. If instead the update phase of the loop takes more than drawing it, we will

spiral into a terrible situation.

We can call it a “spiral of death”, where the simulation will take Y seconds (real time) to simulate X seconds (of game
time), with Y > X, being behind in your simulation makes the simulation take more steps, which will make the

simulation fall behind even more, thus making the simulation lag behind more and more.

8.3.5 Frame Limiting

Frame limiting is a technique where we aim for a certain duration of our game loop. If an iteration of the game loop

is faster than intended, such iteration will wait until we get to our target loop duration.

Let's again consider a loop running at 60fps (or dt = %):

Listing 36: Game loop with Frame Limiting

1 float targetTime = 1.0/60.0;

2 bool game_is_running = True;

4 // We bootstrap dt to 1/60th of a second for the first frame
s float dt = 1.0/60.0;

7 while (game_is_running){

8 // We assume that get_system_time() returns the system time in milliseconds
9 float begin = get_system_time();

10 process_user_input();

1 update_world(dt);

12 draw();

13 float end = get_system_time();

8 THE GAME LOOP 194

2D Game Development: From Zero To Hero

14 // We update our dt

15 dt = end - begin

16 // 1If some time is left, we wait until we reach 1/60th of a second.
17 wait(max(targetTime - dt, 0));

18)

Even if the frame is limited, it's necessary that all updates are tied to our delta time to work correctly. With this loop
the game will run at most at 60 frames per second, if there is a slowdown the game will slow down under 60 fps, if

the game runs faster it won't go over 60fps.

8.3.6 Frame Skipping/Dropping

Slow
Update

Update Update - Update

Dropped

Frame Time
(Rendering is skipped)

A common solution used when a frame takes longer to update and render than the target time is using the so-called

“frame dropping”. The game won’t render the next frame, in an effort to “catch up” to the desired frame rate.

This will obviously cause a perceptible visual stutter.

8.3.7 Multi-threaded Loops

Higher budget (AAA) games don’t usually use a variation of the “classic” game loop, but instead make use of the
capabilities of newer hardware. Using multiple threads (lines of execution) executing at the same time, making

everything quicker and the framerate higher.

Multi-threaded loops are created in a way that separates the input-update part of the game loop from the drawing
part of it. This way the update thread can take care of updating our simulation, while the drawing/rendering loop

can take care of drawing the result to screen.

The catch is that we can’t just wait for the input-update thread to finish before rendering, that wouldn’t make it
quicker than just using a one-threaded game loop: instead we make the rendering thread “lag behind” the input-
update thread by 1 frame - this way while the input-update thread takes care of the frame number n, the drawing

thread will be rendering the prepared frame number n — 1.

Thread

Updating 1 2 3 4 5 6

Rendering 1 2 3 4 5

This 1-frame difference between updating and rendering introduces lag that can be quantified between 16.67ms (at

60fps) and 33.3ms (at 30fps), which needs to be added with the 2-5 ms of the LCD refresh rate, and other factors that

8 THE GAME LOOP 195

2D Game Development: From Zero To Hero

can contribute to lag. In some games where extreme precision is needed, this could be considered unacceptable,

so a single-threaded loop could be considered more fitting.

8.4 Issues and possible solutions

In this section we have a little talk about some common issues related to the game loop and its timing, and some
possible solutions

8.4.1 Frame/Screen Tearing

Screen tearing is a phenomenon that happens when the “generate output” stage of the game loop happens in the

middle of the screen drawing a frame.

This makes it so that a part of the drawn frame shows the result of an output stage, while another part shows a more

updated version of the frame, given by a more recent game loop iteration.

Figure 144: An example of screen tearing

A very common fix for this phenomenon is double buffering, where two color buffers are used. While the first is

shown on screen, the game loop updates and draws on the second color buffer.

When comes the time to draw the color buffer on screen, an operation called “flipping” is performed, where the

second color buffer is shown on screen, so that the game loop can draw on the first color buffer.
To make the game even smoother, a technique called “triple buffering” can be used, which adds a third color buffer
is used to make the animation smoother at the cost of a higher input lag.

8.5 Drawing to screen

When drawing to screen, the greatest majority of games make use of what is called the “painter’s algorithm”, which

looks something like the following:

8 THE GAME LOOP 196

2D Game Development: From Zero To Hero

Clear the screen

Draw The Farthest Background

Draw The Second Farthest Background
Draw The Tile Map

Draw The enemies and obstacles

Draw The Player

S

Display everything on screen

If we divide each “layer” we can see how the painter’s algorithm works:

Figure 145: A small example of the “painter’s algorithm”

Just like a real painter, we draw the background items before the foreground ones, layering each one on top of
the other. Sometimes games make use of priority queues to decide which items to draw first, other times game

developers (usually under the time constraints of a game jam) just hard-code the draw order.

8.5.1 Clearing the screen

Special note about clearing the screen: this is an operation that sometimes may look useless but, like changing the
canvas for a painter, clearing the screen (or actually the “buffer” we’re drawing on) avoids a good deal of graphical

glitches.

8 THE GAME LOOP 197

2D Game Development: From Zero To Hero

Figure 146: How not clearing the screen can create glitches

In the previous image, we can see how a black screen with only a FPS counter can end up drawing all kinds of
glitches when the screen buffer is not cleared: we can clearly see the FPS counter, but the rest of the screen should

be empty, instead the GPU is trying to represent residual data from its memory, causing the glitches.

Figure 147: Another type of glitch created by not clearing the screen

If you forget to clear your screen or set a background every frame, the old buffer data will remain on screen, creating

a “trail-like” effect on your game, which is probably undesirable.

8 THE GAME LOOP 198

2D Game Development: From Zero To Hero

9 Collision Detection and Reaction

Every detection of what is false directs us towards what is true: every trial

exhausts some tempting form of error.

William Whewell
When it comes to collision management, there are two main phases:
* Collision Detection: you find out which game objects collided with each other;

* Collision Reaction: you handle the physics behind the collision detected, making the game objects react to

such collision.

Collisions don’t only happen between game objects (two fighters hitting each other), but also between a character

and the world (or they would end up just going through the ground).

In this section we’ll talk about some ways you can detect and react to collisions.

9.1 Why Collision Detection is done in multiple passes

Collision detection algorithms can be quite costly, even more when you are using a brute force approach, but it's
possible to have a more precise collision detection at a lower cost by combining different collision detection algo-

rithms.

The most common way to apply a multi-pass collision detection is by dividing the process in a “broad” and a “fine”

pass.

The broad pass can use a very simple algorithm to check for the possibility of a collision, the algorithms used are

usually computationally cheap, such as building quad trees.

When the simpler algorithm detects the possibility of a collision, a more precise algorithm is used to check if a
collision really happened, usually such finer algorithms are computationally expensive and will benefit from the first

“broad pass” filter, thus avoiding useless heavy calculations.

In this chapter we’ll see the easier narrow-pass detection first, followed by the more
complex broad-pass algorithms, but remember that a good collision detection system

does a “broad-pass” first, before delving into the “narrow-pass”.

9.2 Narrow-Phase Collision Detection: did it really collide?

First of all, we need to see how we can make sure that two objects really collide with each other.

Sometimes this presents a (quite common) problem when it comes to precision: computers have no knowledge of

infinity (due to their finiteness, see computers are (not) precise). This means that we may need to give some leeway

9 COLLISION DETECTION AND REACTION 199

2D Game Development: From Zero To Hero

and define an “acceptable error” in our calculations, thus we will create a “small enough value” (which in math is
represented by the Greek letter “epsilon”: €) and change our algorithms accordingly.
9.2.1 Collision Between Two Points

This is the simplest case: points are mono-dimensional objects, and the only way two points can collide is when they

have the same coordinates.

An example algorithm would be the following:

Listing 37: Point to point collision detection

1 function point_collision(point A, point B) -> bool{

2 if (A.x == B.x AND A.y == B.y){
3 return True;

4 Jelse{

5 return False;

6 3

7}

A possible lazy/shorter version could be:

Listing 38: Shortened version of a point to point collision detection

1 function point_collision(point A, point B) -> bool{
2 return A.x == B.x AND A.y == B.y;
3}

This algorithm consists in a constant number of operations, so it runs in O(1).

Since numbers in computers can be really precise, a collision between two points may be a bit too precise, so it
could prove useful to have a “buffer” around the point, so that we can say that the two points collided when they’re

around the same place.

In this case, it may prove to be a lot more useful to do a point vs circle detection, or even a circle vs circle collision

detection, in that case the “radius” would be the “approximation” of a point.

If instead you want to use a different method that doesn’t involve square roots, you can use epsilon values to have

an approximation of the collision. In this case the collision area won’t be round, but square.

Listing 39: Point to point collision detection with epsilon values

1 function point_collision(point A, point B) -> bool{

2 float epsilon = 0.0001; // Let's take a sufficiently low value

3 // If both coordinates are "close enough", we trigger a collision.

4 // We take the absolute value, just in case some subtractions end up being negative.
5 return abs(A.x - B.x) <= epsilon AND abs(A.y - B.y) <= epsilon;

6 }

9 COLLISION DETECTION AND REACTION 200

2D Game Development: From Zero To Hero

9.2.2 Collision Between A Point and a Circle

Now a circle comes into the mix, a circle has two major characteristics: a center and a radius.

Figure 148: Reference image for Point-Circle Collision detection

We can see that the distance between the center of a circle and our point can be expressed with a formula:

d=r+z

Where r is the circle radius and x is the difference of the distance between the center of the circle and the point

(which can be negative):

r=d-—r

The point is inside the circle when z < 0, which means:

r<0&sd-r<0&sd<r

We can express this in a few words:

A point is considered inside of a circle when the distance between the point and the center of the circle is

less than or equal to the radius.

So we need a function that calculates the distance between two points, and then use it to define if a point is inside

a circle.

An example could be the following:

Listing 40: Point to circle collision detection

1 structure Circle{

9 COLLISION DETECTION AND REACTION 201

2D Game Development: From Zero To Hero

2 // Let's define a circle class/structure
3 Point center;

4 int radius;

s 3

7 function distance(Point A, Point B) -> float{

8 // Calculates the distance between two points
9 return square_root((A.x - B.x)*2 + (A.y - B.y)"2);
10)

11

12 function circle_point_collision(Circle A, Point B) -> bool{

13 if (distance(A.center, B) <= A.radius){
14 return True;

15 Yelse{

16 return False;

17 }

18 }

Again, the lazier version:

Listing 41: Shorter version of a point to circle collision detection

1 structure Circle{

2 // Let's define a circle class/structure
3 Point center;

4 int radius;

s 3

6

7 function distance(Point A, Point B) -> bool{

8 // Calculates the distance between two points
9 return square_root((A.x - B.x)*2 + (A.y - B.y)"*2);
10)

11
12 function circle_point_collision(Circle A, Point B) -> bool{
13 return distance(A.center, B) <= A.radius;

14}

Although slightly more heavy, computation-wise, this algorithm still runs in O(1).

9.2.3 Collision Between Two Circles

Let’s add another circle into the mix now, and think in more or less the same way as before:

9 COLLISION DETECTION AND REACTION 202

2D Game Development: From Zero To Hero

Figure 149: Reference image for Circle-Circle collision detection

We can see the distance between the center of the circles as expressed with the following formula:

d=ri+x+re

Where 71 and ry are the radii, and x is defined as follows:

x=d—(r1+r3)

As before, our x can be negative, which means that the circles are colliding if x < 0, which means:

x<0&d—(r14+m)<0&d<r +r

We can express the concept in words again:

I Two circles are colliding when the distance between their centers is less or equal the sum of their radii

In pseudo code this would be:

Listing 42: Circle to Circle Collision Detection

1 structure Circle{

2 // Let's define a circle class/structure
3 Point center;

4 int radius;

s 3

7 function distance(Point A, Point B) -> float{

8 // Calculates the distance between two points
9 return square_root((A.x - B.x)*2 + (A.y - B.y)"*2);
0 }

11

12 function circle_circle_collision(Circle A, Circle B) -> bool{

9 COLLISION DETECTION AND REACTION 203

2D Game Development: From Zero To Hero

13 if (distance(A.center, B.center) <= A.radius + B.radius){
14 return True;

15 Yelse{

16 return False;

17 }

18)

The shorter version would be:

Listing 43: Shorter Version of a Circle to Circle Collision Detection

1 structure Circle{

2 // Let's define a circle class/structure
3 Point center;

4 int radius;

s 3

7 function distance(Point A, Point B) -> float{

8 // Calculates the distance between two points
9 return square_root((A.x - B.x)*2 + (A.y - B.y)"2);
10)

11
12 function circle_circle_collision(Circle A, Circle B) -> bool{
13 return distance(A.center, B.center) <= A.radius + B.radius;

14 3}

Again, this algorithm performs a number of operations that is constant, so it runs in O(1).

9.2.4 Collision Between Two Axis-Aligned Rectangles (AABB)

This is one of the most used types of collision detection used in games: it's a bit more involved than other types of
collision detection, but it’s still computationally easy to perform. This is usually called the “Axis Aligned Bounding

Box” collision detection, or AABB.

Let’s start with a bit of theory. We have two squares:

X

Figure 150: Example used in the AABB collision detection

To know if we may have a collision, we need to check if one of the sides is “inside” (that means between the top and

9 COLLISION DETECTION AND REACTION 204

2D Game Development: From Zero To Hero

bottom sides) of another rectangle:

Figure 151: Top-Bottom Check

In this case we know that the “top side” of the second rectangle (highlighted in blue) has a y coordinate between

the first rectangle’s top and bottom sides’ y coordinates (highlighted in red).

Though this is a necessary condition, this is not sufficient, since we may have a situation where this condition is

satisfied, but the rectangles don’t collide:

Figure 152: Top-Bottom Check is not enough

So we need to check the other sides also, in a similar fashion:

X

Figure 153: An example of a left-right check

This has to happen for all four sides of one of the rectangle.

Now we can try putting down a bit of code, we’ll assume that rectangles are defined by their top-left corner (as

usually happens) and their width and height:

Listing 44: Axis-Aligned Bounding Box Collision Detection

1 structure Point{

9 COLLISION DETECTION AND REACTION 205

2D Game Development: From Zero To Hero

2 // Rewritten as a memo
3 int x;

4 int y;

s 3

7 structure Rectangle{

8 Point corner;
9 int width;

10 int height;

u }

12

13 function rect_rect_collision(Rectangle A, Rectangle B) -> bool{

14 if ((A.corner.x < B.corner.x + B.width) AND
15 (A.corner.x + A.width > B.corner.x) AND
16 (A.corner.y < B.corner.y + B.height) AND
17 (A.corner.y + A.height > A.corner.y)){

18 return True;

19 Yelse{

20 return False;

2 3

2 3}

This complex conditional checks 4 things:

* The left side of rectangle A is at the left of the right side of rectangle B;
* The right side of rectangle A is at the right of the left side of rectangle B;
* The top side of rectangle A is over the bottom side of rectangle B;

* The bottom side of rectangle A is underneath the top side of rectangle B.
If all four checks are true, then a collision happened.
The best way to understand this algorithm properly is to test it by hand and convince yourself that it works.

This is a very light algorithm but can quickly become heavy on the CPU when there are many objects to check for
collision. We'll see later how to limit the number of checks and make collision detection an operation that is not as

heavy on our precious CPU cycles.

9.2.5 Line/Point Collision

We can represent a segment by using its two extreme points, which proves to be a quite inexpensive way to represent

a line (it's just two points). Now how do we know if a point is colliding with a line?
To know if a point is colliding with a line we need... Triangles!

Every triangle can be represented with 3 points, and there is a really useful theorem that we can make use of:

I The sum of the lengths of any two sides must be greater than, or equal, to the length of the remaining side.

9 COLLISION DETECTION AND REACTION 206

2D Game Development: From Zero To Hero

So, given a triangle ABC:

B

Figure 154: Example of the triangle inequality theorem

We get the following 3 inequalities:

AB + BC < AC
AC+BC < AB
AB + AC < BC

What is more interesting to us is that when the one of the vertices of the triangle is on its opposite side, the triangle

degenerates:

C
— L
A B

Figure 155: Example of a degenerate triangle

And the theorem degenerates too, to the following:

AC + BC = AB

So we can calculate the distance between the point and each of the two extremes of the line and we know that when

the sum of such distances is equal to the length of the line, the point will be colliding with the line.

In code, it would look something like the following:

Listing 45: Line to Point Collision detection

1 structure Point{

2 int x;
3 int y;
4}

6 structure Line{

9 COLLISION DETECTION AND REACTION 207

2D Game Development: From Zero To Hero

7 Point A;
8 Point B;
o

10

1 function distance(Point A, Point B) -> float{

12 // Calculates the distance between two points
13 return square_root((A.x - B.x)*2 + (A.y - B.y)*2);
14

15

16 function line_point_collision(Point pt, Line 1n) -> bool{

17 // First, let's calculate the length of the line
18 float length = distance(ln.A, 1n.B);

19 // Now let's calculate the distance between the point pt
20 // and the point "A" of the line

21 float pt_a = distance(ln.A, pt);

22 // Same Goes for the distance between pt and "B"
23 float pt_b = distance(ln.B, pt);

24 // Now for the detection

25 if (pt_a + pt_b == length){

26 return True;

27 Yelse{

28 return False;

29 }

30)

It could prove useful to put a “buffer zone” in here too, so that the collision detection doesn’t result too jerky and
precise. In that case you may want to take a look at the line vs circle algorithm, in that case the radius would be the

“approximation” of the point.

9.2.6 Line/Circle Collision

As in the previous paragraph, we memorize a line as a pair of Points, so checking if the circle collides with either end

of the line is easy, using the Point/Circle collision algorithm.

Listing 46: Partial Implementation of a Line to Circle Collision Detection

1 structure Point{

2 int x;
3 int y;
4}

6 structure Line{

7 Point A;
8 Point B;
o }

10
11 structure Circle{
12 Point center;

13 int radius;

9 COLLISION DETECTION AND REACTION 208

2D Game Development: From Zero To Hero

14 3}

15

17

18 function line_circle_collision(Circle circle, Line line) -> bool{

19 bool collides_A = circle_point_collision(circle, line.A);
20 bool collides_B = circle_point_collision(circle, line.B);
21 if (collides_A OR collides_B){

22 return True;

23 }

24 /7

s}

Now our next objective is finding the closest point on the line to the center of our circle. The details and demon-

strations on the math behind this will be spared, just know the following:

Given a line AB between points A = (z1,y1) and B = (x2,y2) and a point P = (z, yx), the point on the line

closest to P has coordinates:

x=x1+u-(r3—2x1)

y=y+u-(y2 —y1)

With:

~ (xk—21) - (22— 21) + (Y — Y1) - (Y2 — 1)
1B — All?

That's a lot of math!

We need to be careful though, cause this formula gives us the point for an infinite line, so the point we find could be

outside of our line. We will use the line/point algorithm to check for that.

After we made sure the point is on the line, we can measure the distance between such point and the center of our

circle, if such distance is less than the radius, we have a hit! (Or just apply the circle/point collision algorithm again).

The final algorithm should look something like this:

Listing 47: Line to circle collision detection

1 structure Point{

2 int x;
3 int y;
4 3}

6 structure Line{

7 Point A;

9 COLLISION DETECTION AND REACTION 209

2D Game Development: From Zero To Hero

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Point B;
3

structure Circle{
Point center;

int radius;

function distance(Point A, Point B) -> float{
// Calculates the distance between two points

return square_root((A.x - B.x)*2 + (A.y - B.y)*2);

function line_point_collision(Line line, Point point) -> bool{

//

function circle_point_collision(Circle circ, Point point) -> bool{

//

function line_circle_collision(Circle circle, Line line) -> bool{
// We check the ends first
bool collides_A = circle_point_collision(circle, line.A);
bool collides_B = circle_point_collision(circle, line.B);
if (collides_A OR collides_B){

return True;

}

// We pre-calculate "u", we'll use some variables for readability
int x1 = line.A.x;

int x2 = line.B.x;

int xk = circle.center.x;

int yl = line.A.y;

int y2 = line.B.y;

int yk = circle.center.y;

float u = ((xk - x1) * (x2 - x1) + (yk - y1) * (y2 - y1))/(distance(line.A, line.B))"2;
// Now let's calculate the x and y coordinates

float x = x1 + u *x (x2 - x1);

float y = y1 + u *x (y2 - y1);

// "Reuse": we'll use some older functions, let's create a point, with the coordinates we
found

Point P = Point(x,y);

// Let's check if the "closest point" we found is on the line

if ((line_point_collision(line, P)) == False){

// If the point is outside the line, we return false, because the ends have already been

checked against collisions
return False
Yelse{
// Let's Reuse the Point/Circle Algorithm

return circle_point_collision(circle, P);

9 COLLISION DETECTION AND REACTION

210

2D Game Development: From Zero To Hero

56 3

9.2.7 Point/Rectangle Collision

If we want to see if a point collides with a rectangle is really easy, we just need to check if the point’s coordinates

are inside the rectangle.

Listing 48: Point/Rectangle collision detection

1 function pointRectCollision(float x1, float y1, float rectx, float recty, float rectwidth, float

rectheight) -> bool{

2 // We check if the point is inside the rectangle
3 return x1 >= rectx AND x1 <= rectx + rectwidth AND y1 >= recty AND y1 <= recty + rectheight;
4

9.2.8 Point/Triangle Collision

A possible way to define if a point is inside a triangle, we can use a bit of geometry.

We can use Heron’s formula to calculate the area of the original triangle, and compare it with the sum of the areas

created by the 3 triangles made from 2 points of the original triangle and the point we are testing.

Figure 156: Point/Triangle Collision Detection: division into sub-triangles

If the sum of the 3 areas (represented in different colors in the figure) equals to the original calculated area, then

we know that the point is inside the triangle.

Let’s see the code:

Listing 49: Point/Triangle Collision Detection

1 function point_triangle_collision(float px, float py, float x1, float y1, float x2, float y2,
float x3, float y3) -> bool{

2 float original_area = abs((x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1));
3 float areal = abs((x1-px)*(y2-py) - (x2-px)*(yl-py));
4 float area2 = abs((x2-px)*(y3-py) - (x3-px)x(y2-py));
5 float area3d = abs((x3-px)*(yl-py) - (x1-px)*(y3-py));

9 COLLISION DETECTION AND REACTION 211

2D Game Development: From Zero To Hero

6 if (areal + area2 + area3 == original_area){
7 return True;

8 Yelse{

9 return False;

10 }

1

Let’s see how we can change the algorithm to accommodate for some leeway, since the we may be requiring too

much precision from our algorithms. We can do that by using epsilon values.

Our main test is that the sum of the area of the 3 triangles we create (A1, Ao, A3) is equal to the area of the original

triangle (Ap), in math terms:

A1+ A+ A3 =4

We can also rewrite such equation this way:

A +Ay+ A3 -4, =0

Due to possible precision issues we know that there are some values where the equation above is not true, so we

choose a “low enough error” that we are willing to accept, for example e = 0.0001, and use this test instead:

|A1+A2+A3—AQ‘<€

Which can be expanded (if you want) to

—e< A1+ Ay + A3 — Ay <e

The code wouldn’t change much, but for sake of clarity, here it is:

Listing 50: Point/Triangle Collision Detection with epsilon

1 function point_triangle_collision(float px, float py, float x1, float y1, float x2, float y2,
float x3, float y3) -> bool{

2 // We accept anything that is closer than 1/1000th of unit

3 const float epsilon = 0.0001;

4 float original_area = abs((x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1));
5 float areal = abs((x1-px)x(y2-py) - (x2-px)*(yl-py));

6 float area2 = abs((x2-px)*(y3-py) - (x3-px)x(y2-py));

7 float area3 = abs((x3-px)*(yl-py) - (x1-px)*(y3-py));

8 if (abs(areal + area2 + area3 - original_area) < epsilon){

9 return True;

10 Yelse{

9 COLLISION DETECTION AND REACTION 212

2D Game Development: From Zero To Hero

1 return False;

12 3

9.2.9 Circle/Rectangle Collision

First of all we need to identify which side of the rectangle we should test against, so if the centre of the circle is to
the right of the rectangle, we will test against the right edge of the rectangle, if it’'s above we’ll test against the top

edge and so on...

After that, we just perform some math on the distances and calculated values to detect if the circle collides with the

rectangle.

Listing 51: Rectangle to Circle Collision Detection

1 structure Point{

2 // Rewritten as a memo
3 int x;

4 int y;

s 3

7 structure Rectangle{

8 // Let's define a rectangle class/structure
9 Point corner;

10 int width;

1 int height;

12

13

14 structure Circle{

15 // Let's define a circle class/structure
16 Point center;

17 int radius;

18)

19

20 function circle_rectangle_collision(Circle circ, Rectangle rect) -> bool{

21 // Detects a collision between a circle and a rectangle

22

23 // These variables are used as the coordinates we should test against
24 // They are temporarily set to the circle center's coordinates for a reason we'll see soon
25 int tx = circ.center.x;

26 int ty = circ.center.y;

27

28 // Let's detect which edge to test against on the x axis

29 if (circ.center.x < rect.corner.x){

30 // We're at the left of the rectangle, test against the left side
31 tx = rect.corner.x;

32 Yelse if (circ.center.x > rect.corner.x + rect.width){

33 // We're at the right of the rectangle, test against the right side
34 tx = rect.corner.y + rect.width;

9 COLLISION DETECTION AND REACTION 213

2D Game Development: From Zero To Hero

35 }

36

37 // Same thing on the vertical axis

38 if (circ.center.y < rect.corner.y){

39 // We're above the rectangle, test against the top side

40 ty = rect.corner.y;

a Yelse if (circ.center.y > rect.corner.y + rect.height){

42 // We're below the rectangle, test against the bottom side

43 ty = rect.corner.y + rect.height;

44 }

45

46 // Let's get the distance between the testing coordinates and the circle center
47 int distanceX = circ.center.x - tx;

48 int distanceY = circ.center.y - ty;

49 float distance = square_root(distanceX”2 + distanceY"2);

50

51 // Note that if the center of the circle is inside the rectangle, the testing coordinates

will be the circle's center itself, thus the next conditional will always return true

52

53 if (distance <= circ.radius){

54 return True;

55 }

56

57 // Default to false in case no collision occurs
58 return False;

59)

9.2.10 Line/Line Collision

Line/Line collision is quite simple to implement once you know the inner workings of geometry, but first we need to

explain the thought behind this algorithm, so... math warning!!

Let’s look at the following image:

9 COLLISION DETECTION AND REACTION 214

2D Game Development: From Zero To Hero

Figure 157: Example image for line/line collision

A generic point P, of line A can be represented with the following formula:

Pazpl-i-ua'(Pg—Pl)

which translates into the coordinate-based equations:

To =21+ Uq - (T2 — 1)

Yo = Y1 + Uq - (T2 — 21)

This makes us understand that any point of line A can be represented by its starting point P;, plus a certain fraction

(represented by u,) of the vector represented by P, — P;.
This also means that 0 < u, < 1, else the point won't be on the segment.

In the same way, a generic point P, of line B can be represented with:

Py =P+ uy - (Py— Ps3)

which becomes:

Ty = 3+ Up - (T4 — x3)

Yo = Y3 + Up - (T4 — 23)

9 COLLISION DETECTION AND REACTION 215

2D Game Development: From Zero To Hero

The two lines will collide when P, = P,, so we get the following equations:

1+ Ug - (X2 — 1) = 23 +up - (T4 — 3)

Y1+ Ua - (Y2 —y1) = ys +up - (ya —y3)

That need to be solved in the u, and uy variables.

The result is:

w, — @a=ws) (W1—ys) = (ya—ys) (1 —w3)
@ (ya—y3)-(w2—z1)—(ra—23) (Y2—y1)
w = @2me1) (1—ys)—(y2—y1)-(x1—as)
b= (a—ys)-(z2—w1)—(va—23) (y2—v1)

Substituting either of the results in the corresponding equation for the line will give us the intersection point (which

may be useful for some particle effects).

Now some notes on our solution:

* If the denominator for the equations for u, and u; equals to zero, the two lines are parallel
* If both the numerator and denominator for u, and u; are equal to zero, the two lines are coincident

e Ifboth 0 < uy, < 1and 0 < up <1 then the two segments collide.

Now we can translate all this math into code:

Listing 52: Implementation of the line/line collision detection

1 function linelLineCollision(float x1, float y1, float x2, float y2, float x3, float y3, float x4,
float y4) -> bool{

2 // Let's calculate the denominator, this will allow us to avoid a
3 // "divide by zero" error

4 float den = ((y4 - y3) % (x2 - x1) - (x4 - x3) * (y2 - y1));

5

6 if (den == 0){

7 // The lines are parallel

8 return false;

° 3

10

1 float uA = ((x4 - x3) * (y1 - y3) - (y4 - y3) x (x1 - x3)) / den;
12 float uB = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3)) / den;
13

14 // Let's see if uA and uB tell us the lines are colliding

15 if (CuA >= @ AND uA <= 1) AND (uB >= @ AND uB <= 1)){

16 return true;

17 }

18

19 // If not, they don't collide

20 return false;

2}

9 COLLISION DETECTION AND REACTION 216

2D Game Development: From Zero To Hero

This collision detection algorithm can be useful for line-based puzzle games, line the untangle puzzle.

9.2.11 Line/Rectangle Collision

Given the previous explanation about the Line/Line collision detection, it's quite easy to build a Line/Rectangle
algorithm; distinguishing the cases where we want to account for a segment being completely inside of a rectangle

or not.

Listing 53: Implementation of the line/rectangle collision detection

1 function linelLineCollision(float x1, float y1, float x2, float y2, float x3, float y3, float x4,
float y4) -> bool{

2 // our previous implementation of the line/line collision detection
3 /7
4 3

5
¢ function pointRectCollision(float x1, float y1, float rectx, float recty, float rectwidth, float

rectheight) -> bool{

7 // our previous implementation of a point/rectangle collision detection
8 //
o

10
11 function lineRectangleCollision(float x1, float y1, float x2, float y2, float rectx, float recty

, float rectwidth, float rectheight) -> bool{

12 // If we want to test if a line is completely inside of a rect, we just need
13 // to see if any of its endpoints is inside the rectangle
14 if (pointRectCollision(x1, y1, rectx, recty, rectwidth, rectheight) OR pointRectCollision(x2

, y2, rectx, recty, rectwidth, rectheight)){

15 // At least one of the ends of the segment is inside the rectangle

16 return True;

17 3

18 // Now to test the rectangle against the line, if it's not completely inside

19 bool left = linelLineCollision(x1, yl1, x2, y2, rectx, recty, rectx, recty + rectheight);

20 bool right = linelLineCollision(x1, y1, x2, y2, rectx + rectwidth, recty, rectx + rectwidth,

recty + rectheight);

21 bool top = linelLineCollision(x1, y1, x2, y2, rectx, recty, rectx + rectwidth, recty);

22 bool bottom = lineLineCollision(x1, y1, x2, y2, rectx, recty + rectheight, rectx + rectwidth
, recty + rectheight);

23

24 if (left OR right OR top OR bottom){

25 // We hit one of the sides, we are colliding
26 return True;

27 3

28

29 // In any other case, return false

30 return False;

a }

9 COLLISION DETECTION AND REACTION 217

2D Game Development: From Zero To Hero

This can prove useful to test for “line of sight” inside an Al algorithm.

9.2.12 Point/Polygon Collision

Here we are, the most complex matter when it comes to narrow-phase collision detection: detecting collisions

between arbitrary convex polygons.

In this book we will focus on convex polygons “without holes”, which is the most com-

mon situation you'll find yourself in.

First of all, we will start by talking about some theorems and requirements that will help us on the way to build a

“polygon vs polygon” collision detection algorithm.

9.2.12.1 Jordan Curve Theorem

Let’s imagine a plane, like our 2D screen: if we draw a non-self-intersecting, continuous loop in the plane we obtain

a Jordan Curve. This curve separates the plane in two distinct regions: the “inside” and the “outside”.

Outside

Figure 158: Example of a Jordan Curve

Any non-self-intersecting polygon (be it convex or non-convex) can be seen as a Jordan curve, this means that we

can easily identify (programmatically) if a point is inside or outside the polygon. At least in the “convex” case.

Let’s take a convex polygon, and a point inside such polygon: we can see that if we choose a point outside the
polygon (non-colliding) we can strike a line between the “inside point” and the chosen point, and such line will

intersect one of the polygon’s edges. This gives us an idea on how to check for “point vs. polygon”.

9 COLLISION DETECTION AND REACTION 218

2D Game Development: From Zero To Hero

Figure 159: A simple case where a point is outside the polygon

This doesn’t happen if the point is inside the polygon, obviously:

Figure 160: A simple case where a point is inside the polygon

This is all well and good, but we have two problems on hand:

* Finding a point inside the polygon;

* We have a non-convex polygon;

Let’s leave the first problem aside, since talking about it may end up being confusing and just empty talk (or writing,

being this a book), and let’s focus on the second problem.

If we have a non-convex polygon, we may end up with a line that intersects the polygon’s perimeter even if the point

is colliding:

9 COLLISION DETECTION AND REACTION 219

2D Game Development: From Zero To Hero

/._ ——————— _ .
Q2

-
-
-~

o\

'Y
Q.

Figure 161: How a non-convex polygon makes everything harder

Here we call P the “point inside the polygon” while (01 and ()2 are the points we are testing: as we can see (0

triggers our “non-colliding” test even though it is inside the polygon.

Can you see what can help us solving this issue? I'm sure you have a number of ideas in mind, we’ll talk about it in

the non-convex polygon collision detection section.

9.2.12.2 Thinking outside the box: polygon triangulation

As you can see, as simple as it can be, the Jordan curve theorem poses some problems that may be a bit out of our

reach as of now, so let’s try to find a less ideal but easier to understand solution.
Let’s now limit ourselves to convex polygons, which (again) is the most common situation.

We can take inspiration from 3D graphics, where any solid shape (and thus the polygons that make those up) are
decomposed to a bunch of triangles. Nothing stops us from doing the same and taking any polygon and decomposing

it to a group of triangles, like follows:

Figure 162: Decomposing a polygon into triangles

9 COLLISION DETECTION AND REACTION 220

2D Game Development: From Zero To Hero

This specific triangulation is called “fan triangulation” and it is chosen for its @(n) (where n is the number of vertices)

execution time.

9.2.12.3 Bounding Boxes

Before making our poor CPU undertake big calculations, we may want to check if there is even a possibility of a

collision, maybe with a simpler algorithm.

The great majority of the lifetime of our game objects is spent not colliding with anything, so if we can easily exclude

a collision before starting complex algorithms, our game will just benefit from it.

We can take our complex polygon and give it a “bounding box”, any point that is inside such box has a possibility of

colliding with our polygon, but any point outside the bounding box surely will not collide.

Figure 163: Example of a polygon with its bounding box

How do we calculate a bounding box? Simple, we just need 4 coordinates:

» The smallest x (which we’'ll call Z,,51)
e The smallest y (Ymin)
* The biggest X (Zyaz)

» The biggest ¥ (¥maz)

The vertices of our bounding box will always be:

A(xmin; ywwn) B(xmaac; ynun) C(xmax; ym.am) D(‘Lmzn; ymam)

9 COLLISION DETECTION AND REACTION 221

2D Game Development: From Zero To Hero

Thanks to how rectangles work, we can just use the points A and C to build a rectangle:

since they contain all 4 coordinates, we can infer B and D from them.

This is simple to achieve: we just need to loop over all the vertices and find our coordinates. The algorithm here

below:

Listing 54: How to find the bounding box of a polygon

1 structure Point{

2 // Rewritten as a memo
3 int x;

4 int y;

5)

7 class Rectangle{

8 Point corner;

9 Integer width;

10 Integer height;

11 //

12 @staticmethod

13 function from_points(Point topleft, Point bottomright) -> Rectangle{
14 //

15 3

16 //

1}

18

19 function bounding_box(Point[] vertices) -> Rectangle{

20 // First we create and bootstrap the variables
21 int xmin = vertices[0].x;

2 int xmax = vertices[0].x;

23 int ymin = vertices[0].y;

2 int ymax = vertices[0].y;

25 // Now we iterate through all the other vertices
26 for (each vertex in vertices){

27 if (vertex.x < xmin){

28 xmin = vertex.x;

29 }

30 if (vertex.x > xmax){

31 xmax = vertex.x;

2 3

33 if (vertex.y < ymin){

34 ymin = vertex.y;

35 }

36 if (vertex.y > ymax){

37 ymax = vertex.y;

38 }

9 COLLISION DETECTION AND REACTION 222

2D Game Development: From Zero To Hero

40

41

42

43

44

45

46

47

48

49

50

51

}

// Now we can build the needed points for the bounding box

A

C.

o > > O

y

new Point();

new Point();

// We

xmin;
ymin;
xmax ;
ymax ;

build our bounding box

Rectangle boundingBox = Rectangle.from_points(A, C);

// and return it

return boundingBox;

To check if the collision “may happen”, we can just use a simple Point vs Rectangle collision check.

9.2.12.4 Point/Polygon collision detection using triangulation

Finally, after all the math and preparations, we can start working towards our collision detection algorithm.

Pitfall Warning!

b]

This algorithm works only with convex polygons that have no holes, also it probably is
not the most efficient way to check for collisions between a point and a polygon.

This is more akin to an exercise in creativity and less about “notions”: we found a
simple solution to a complex problem. Even if it is not the most efficient, it may be

“efficient enough”.

9.2.12.4.1 The “Polygon” class

Differently from previous classes and structures, the “polygon” class will need a little more work. This is because

we are going to do more than just merely memorize vertices.

First of all we need an ordered list (or array) of vertices, which will be represented by points. Secondly, we need

facilities to calculate list of triangles, as well as their areas.

>

Pitfall Warning!

You may be tempted to memorize the “triangles” that are an output of the “fan trian-
gulation”, as well as their areas. This may be a good idea if well managed, but we
will need to take care of “moving” those triangles and manage when the polygon gets
deformed: in that case all the triangle areas will have to be recalculated.

Same goes for the bounding box, which will change in size when the polygon rotates
or deforms. In this book we will try to keep the class as generic as possible (as well as

simple), thus we will just recalculate everything every frame as needed.

9 COLLISION DETECTION AND REACTION

223

2D Game Development: From Zero To Hero

Thirdly, we need the constructor to do some math before we can use the polygon.

“fanning” function.

Whew... That's a lot of work, but here’s the code for the polygon class:

Finally we need to integrate a

Listing 55: A (not so) simple polygon class

1 class Polygon{

2 Point[] vertices;

3

4 function calculate_bounding_box() -> Rectangle{

5 // This function calculates the bounding box

6 /] mmmmmmmmmmmmmmmmmmmm oo

7 // First we create and bootstrap the variables

8 int xmin = vertices[0].x;

9 int xmax = vertices[0].x;

10 /%

11 *

12 * see the bounding box algorithm for the full version
13 *

14 */

15 // We build our bounding box

16 Rectangle boundingBox = Rectangle.from_points(A, C)

17 // and return it

18 return boundingBox;

19 }

20

21 function do_fanning() -> Triangle[1{

22 /*

23 * This function iterates over the vertices and returns
24 * an array of triangles corresponding to the "fan triangulation"
25 */

26 // We fix the "base" of the fan on the first vertex

27 Point root_vertex = vertices[0];

28 Triangle[] temp_triangles = new Triangle[];

29 // Now we iterate through all the other vertices

30 for (each j from 2 to vertices.length() - 1){

31 // j goes from the third vertex, to the last

32 // j - 1 goes from the second to the second to last
33 temp_triangles.append(Triangle.from_points(root_vertex, j 1, 3));
3 3

35 // In the end, we will have the triangles array, we can just return it
36 return temp_triangles;

37 }

38)

9.2.12.4.2 The algorithm

After all this preparation, we are finally ready for the algorithm, which will happen in two passes:

9 COLLISION DETECTION AND REACTION

224

2D Game Development: From Zero To Hero

1. A “broad”-ish pass, where we compare the point to the polygon’s bounding box

2. A “proper-narrow” pass, where we do a series of triangle vs point collision detections

Here's the code:

Listing 56: Polygon vs Point collision detection

1 //
> function polygon_point(Polygon poly, Point point) -> bool{

3 // First of all, we get the polygon's bounding box

4 Rectangle bounding_box = poly.calculate_bounding_box();

5 // Then we do a simple point vs. rectangle check

6 if (not point_rectangle(bounding_box, point)){

7 // We are not even in the bounding box, we can't collide

8 return False;

9 3

10 // If instead we are in the bounding box, we need to get the "fan triangulation"
1 Triangle[] triangles = poly.do_fanning();

12 // Now we check, for each triangle, if the point collides

13 for (triangle in triangles){

14 if (point_triangle(triangle, point)){

15 // We found the "slice" of the polygon that the point collides with
16 return True;

1 3

18 }

19 // If we pass all triangles without a hit, we are in the bounding box

20 // but outside the polygon, that's the worst case, and we are not colliding
21 return False;

2 }

9.2.12.4.3 Performance analysis

The algorithm seems fairly simple, but we may want to check its performance to see how efficient it is. In this

analysis n will be the number of vertices, while m is the number of triangles.

The best case is that the point we’'re testing is outside the polygon’s bounding box: this means that we calculate the

bounding box (which is ©(n)) and we check the point against it (which is ©(1)), thus our best case (lower bound)
is Q(n).

The worst case is when the whole algorithm is performed to the end, which means the point is inside the bounding
box, but outside the polygon: this means we calculate the bounding box (©(n)), check against it (©(1)), do the “fan
triangulation” (©(n)), check each triangle without finding any collision (O(m)) and get to the end. Out worst case

(upper bound) is O(n + m).

Considering the fact that the number of triangles m is tied to the number of vertices n by the formula (valid for simple

convex polygons)

9 COLLISION DETECTION AND REACTION 225

2D Game Development: From Zero To Hero

m=n—2
We have an upper bound of O(n +m) = O(n +n —2) =~ O(n), this is because the constant gets “squashed by
the linear behaviour” of n, and 2 - n behaves asymptotically in the same way as n when the dataset grows.

Even though we have a tight bound of @(n) in our entire algorithm (which means the amount of calculations goes up
slowly with the addition of new vertices), we need to be mindful of the amount of calculation that is done, including

some heavy operations like square roots.

9.2.13 Circle/Polygon Collision

Now that we got one of the hardest topics out of the way, we can focus on other types of collision detection between

arbitrary convex polygons: one of those is the “circle vs polygon” collision detection.

Let’'s see an example image first:

O

Figure 164: Example image used for circle/polygon collision detection

Here we can see four different cases of collision (or lack thereof) between a circle and a polygon (if you're particularly

acute, you may have noticed we're missing a 5th case, but we’ll talk about it shortly):

* Case A: The circle is completely inside the polygon;
* Case B: The circle is partially inside the polygon, with the center being inside the polygon;
* Case C: The circle is partially inside the polygon, with the center being outside the polygon;

* Case D: The circle is completely outside the polygon.

Case A and B can be solved together with a point/polygon check, where the point is the center of the circle, while

case C can be solved by a line/circle check between the circle and all the edges of the polygon.

What about the “missing 5th case”? Here it is:

9 COLLISION DETECTION AND REACTION 226

2D Game Development: From Zero To Hero

Figure 165: An edge case of the circle/polygon check

In this case the circle contains the polygon completely, with its center outside of the polygon area, so the check

used in cases A and B wouldn’t work and neither would the one used in case C.

This is a really rare edge-case, since usually the game does its checks so fast that you’d end up in case C long before
this edge-case sees the light of day. In the event this happens, we just need to check if any of the vertices of the

polygon is inside the circle.

Here’s the full algorithm:

Listing 57: Polygon vs Circle collision detection

1 //

2> function circle_polygon(Polygon poly, Circle circ) -> bool{

3 // Case C (and partly B) are less resource-intensive than

4 // a point/polygon check, so let's do them first

5 for (i from 0 to poly.vertices.length() - 1){

6 // We iterate through all the vertices

7 int j =1+ 1;

8 // If we get to the end, we wrap around j

9 if (j==poly.vertices.length()){

10 j = 0;

11 }

12 Line temp_line = Line.fromPoints(poly.vertices[i], poly.vertices[j1);
13 // In case we find a hit, we already know there is a collision

14 if (line_circle_collision(circ, temp_line)){

15 return True;

16 }

¥ 3}

18 // Now Let's check for cases "A" and "B"

19 if (polygon_point(poly, circ.center)){

20 // If the center is inside the polygon, we have a collision

21 return True;

2 3

23 // Now let's check for the rare edge-case: if this case happens, all the vertices
24 // are inside the circle, so we can only check one of them

25 if (circle_point_collision(circ, poly.vertices[0])){

26 // If any vertex is inside the circle, we have a collision, so we check the first

9 COLLISION DETECTION AND REACTION 227

2D Game Development: From Zero To Hero

27 return True;

28 }

29 // If none of the checks above returned, we don't have a collision (case D)
30 return False;

31}

9.2.14 Line/Polygon Collision

The line vs polygon collision detection algorithm is not really different from the ones we have seen previously. Let’s

take a look at an image with all the cases we can think about:

wo

co

Figure 166: Example image used for line/polygon collision detection

Here we can see 4 cases (this time for real):

+ Line AB: The segment is completely inside the polygon (including its ends);
 Line C'D: The segment is partially inside the polygon (one of its ends is inside the polygon);
» Line E'F': The segment crosses the polygon, but both its ends are outside the polygon;

« Line GH: The segment is completely outside the polygon;

We can solve the cases involving the lines AB and C'D by checking if either of the ends is inside the polygon, using

a point/polygon collision check.

The case involving the line E'F' can be solved by a line/line collision check between the F'F' and all the edges of the

polygon.

Let’s take a look at the full algorithm:

Listing 58: Polygon vs Line collision detection

1 //

> function line_polygon(Line line, Polygon poly) -> bool{

3 // First of all, let's check if either of the line ends are inside the polygon
4 // This covers cases AB and CD

5 if (polygon_point(poly, line.A)){

6 // One of the ends is inside the polygon, we have a hit

7 return True;

8 3

9 COLLISION DETECTION AND REACTION 228

2D Game Development: From Zero To Hero

9 if (polygon_point(poly, line.B)){

10 // One of the ends is inside the polygon, we have a hit
11 return True;

12 }

13 // Now we check for case EF

14 for (i from 0 to poly.vertices.length() - 1){

15 // We iterate through all the vertices

16 j=1i+1;

17 // If we get to the end, we wrap around j

18 if (j == poly.vertices.length()){

19 j = 0;

20 }

21 Line temp_line = Line.fromPoints(poly.vertices[i], poly.vertices[j]);
2 if (line_line_collsion(temp_line, line)){

23 return True;

2 ¥

25 }

2 if (line_line_collision(temp_line, line)){

27 return True;

28 }

29 // If none of the previous checks was triggered, we don't have a collision
30 return False;

31}

9.2.15 Polygon/Polygon Collision

Here we are, the final frontier, polygon vs polygon collision detection. We went through a lot of pages of notions and

reasoning to get here, now we have the tools to undertake one of the more complex collision detection methods.

Remember: we are checking if two convex polygons are colliding, let's see an example image first.

Figure 167: Example image used for polygon/polygon collision detection

We can see 4 cases here, from the simplest to the hardest:

e The Square D is outside the polygon;

* The Pentagon B is completely inside the polygon

9 COLLISION DETECTION AND REACTION

229

2D Game Development: From Zero To Hero

* The Octagon E is colliding with the heptagon C and a vertex of C is inside of E;

* The heptagon C is colliding with the hexagon A, but none of the vertices of C are inside of A;

We can easily solve the cases involving A and E with a “polygon vs line” collision detection, while the case involving

B can be checked by doing a “polygon vs point” check.

Let’s take a look at the algorithm:

Listing 59: Polygon vs Polygon collision detection

1 //
> function polygon_polygon(Polygon p1, Polygon p2) -> bool{

3 // First we do a polygon vs line check for all the edges

4 for (i from 0 to p2.vertices.length() - 1){

s int j =i+ 1;

6 if (j == p2.vertices.length()){

7 // Wrap around in case we get to the end

8 j = 0;

° 3

10 Line temp_line = Line.fromPoints(p2.vertices[i], p2.vertices[j])

1 if (polygon_line(pl, temp_line)){

12 // We have a hit

13 return True;

14 3

15 3

16 // Now we check in case one polygon contains the other, we can just check a single vertex
17 if (polygon_point(pl, p2.vertices[0]) or polygon_point(p2, pl.vertices[0])){
18 return True;

19 3

20 // None of the checks was triggered, there is no collision

21 return False;

2)

As you can see, the algorithm is quite short, but it builds on a lot of previous algorithms that we already studied, so

there is a lot of “hidden complexity” behind these few rows of code.

We can make the algorithm perform a bit better by adding a check between the (axis
‘ aligned) bounding boxes first: this will drastically reduce the amount of “line vs poly-
gon” and “point vs polygon” checks, at the expense of a slightly heavier algorithm

when a collision happens.

9.2.16 Non-convex polygons collision

Let’s go back to our previous example, using a non-convex polygon: we have an “inside point” and two points to

test, one inside and one outside.

9 COLLISION DETECTION AND REACTION 230

2D Game Development: From Zero To Hero

/‘_ ——————— _‘
Q2

b

o\

-
-~

'Y
Q.

Figure 168: How a non-convex polygon still makes everything harder

The trick is counting the number of times our “segment between the points” hits the perimeter of the polygon:

.- 1P Q2

o
Q.

Figure 169: Counting how many times we hit the perimeter gives us the result

If the number of “hits” is odd, we know the point tested is outside, if the number of “hits” is even, the point is inside
the polygon.

The previous statement fails when we hit a vertex in our way: we can’t really count it as a “double hit”, because

there’s the possibility that we are hitting it while “entering” the polygon.

9 COLLISION DETECTION AND REACTION 231

2D Game Development: From Zero To Hero

'Y
Q.

Figure 170: Issues with vertices make everything even harder

If we counted the vertex hit as a “double hit”, we would end up having a point “inside the polygon” figuring as a

“point outside the polygon”.

The complications and edge cases are many and beyond the scope of this book, so we’ll stop here and instead

continue with the ways we discussed earlier.

9.2.16.1 Polygon triangulation: the return

We can extend the reasoning we made with simple convex polygons earlier to all simple polygons (so we can include

non-convex ones too): any non-self-intersecting polygon without holes can be decomposed into triangles.

The only limitation we have is the method: the “fan triangulation” method works only with convex polygons and a

very limited set of non-convex ones; so we need to find a different way of triangulating those polygons.

Figure 171: Triangulating a non-convex polygon

Triangulation methods include “ear clipping” and “monotone polygon triangulation”, but their implementation is

beyond the scope of this book.

9 COLLISION DETECTION AND REACTION 232

2D Game Development: From Zero To Hero

‘ You can always take any type of polygon (even with holes) and decompose it into

a bunch of convex polygons that can be fan-triangulated. Many graphical libraries

represent polygons based on the fan-triangulation method.

9.2.17 Pixel-Perfect collision

Pixel perfect collision is the most precise type of collision detection, but it’s also by far the slowest.

The usual way to perform collision detection is using bitmasks which are 1-bit per pixel representation of the sprites

(white is usually considered a “1"” while black is considered a “0").

i —

Figure 172: Two Bitmasks that will be used to explain pixel-perfect collision

A logic “AND” operation is performed, pixel-by-pixel, on the bitmasks; with the sprite position taken in consideration,

as soon as the first AND operation returns a “True” a collision occurred.

Figure 173: Two Bitmasks colliding, the ‘AND’ operations returning true are highlighted in white

Listing 60: Example of a possibile implementation of pixel perfect collision detection

1 class Color{

2 int colorData;
3 bool function isWhite();
4)

6 structure Bitmask{

7 Color[] data;
8 Color getColor(x, y);
s }

10

11 structure Sprite{

9 COLLISION DETECTION AND REACTION 233

2D Game Development: From Zero To Hero

12 Bitmask bitmask;
13 int x;

14 int y;

15 int width;

16 int height;

v}

18

19 function pixel_perfect_collision(Sprite A, Sprite B) -> bool{

20 // Calculate the intersecting rectangle to limit checks
21 int x1 = max(A.x, B.x);

22 int x2 = min((A.x + A.width), (B.x + B.width));

23

24 int y1 = max(A.y, B.y);

25 int y2 = min((A.y + A.height), (B.y + B.height));

26

27 // For each pixes in the intersecting rectangle, let's check
28 for (each y from y1 to y2){

20 for (each x from x1 to x2){

30 a = A.bitmask.getColor(x - A.x, y - A.y);

N b = B.bitmask.getColor(x - B.x, y - B.y);

32

33 if (a.isWhite() AND b.isWhite()){

34 return True;

35 }

36 }

37 3

38

39 // If no collision is occurred by the end of the checking, we're safe
40 return False;

a1}

This algorithm has a time complexity of O(n . m) where n is the total number of pixels of the first bitmask, while m

is the total number of pixels in the second bitmask.

9.3 Broad-phase collision detection: is a collision even possible?

Now we need to find which game objects collided, and this can be easily one of the most expensive parts of our

game, if not handled correctly.
This section will show how knowing which items will surely not collide can help us optimize our algorithms.

We need to remember that each object (as good practices suggest) know only about themselves, they don’t have
“eyes” like us, that can see when another object is approaching them and thinking “I’'m gonna collide”. The only

thing we can do it having “someone else” take care of checking for collisions.

As an example, we'll take the following situation:

9 COLLISION DETECTION AND REACTION 234

2D Game Development: From Zero To Hero

o °

Figure 174: Example for collision detection

We can evidently see how circles 1 and 2 are colliding, but obviously our game won’t just “know” without giving it a

way to think about how two objects collide.

9.3.1 The Brute Force Method

The simplest method is the so-called “brute force” method: you don’t know which items may collide? Just try them

all.

So if we consider a list of 7 game objects, we'll need to see if 1 collides with 2, 1 collides with 3, ..., 2 collides with

1, ..

An algorithm of this type could be the following:

Listing 61: Brute Force Method of collision search

1 function is_collision(Item A, Item B) -> bool{

2 // Defines how two items collide (being circles, this could be a difference of radii)
3 //

4 3

5

¢ Item[] items = [iteml, item2, ...J;

7

s function get_colliding_items(Item[] items_to_check) -> Item[1{

9 Item[] colliding_items = [];

10

1 for (A in items_to_check){

12 for (B in items_to_check){

13 if (A is not B){

14 // We avoid checking if an item collides with itself, for obvious reasons
15 if (is_collision(A, B)){

16 // We keep together the pair of items that collided
17 colliding_items.add(new pair(A, B));

18 }

19 3

20 }

21 3

9 COLLISION DETECTION AND REACTION 235

2D Game Development: From Zero To Hero

22 return colliding_items;

This algorithms runs in O(n?), because it checks every item with every other, even with itself.

In this example, the algorithm completes in 49 steps, but you can imagine how a game could slow down when there
is an entire world to update (remember the collision detection, among with other updates and rendering/drawing,

must happen in less than 16.67 and 33.33ms, so if you can save time, you totally should).

9.3.2 Building Quad Trees

A nice idea would be being able to limit the number of tests we perform, since the brute force method can get really

expensive really quickly.

When building quad-trees, we are essentially dividing the screen in “quadrants” (and if necessary, such quadrants
will be divided into sub-quadrants), detect which objects are in such quadrants and test collisions between objects

that are inside of the same quadrant.

(O o

Figure 175: Graphical example of a quad tree, overlaid on the reference image

And here below we can see how a quad tree would look, in its structure:

Root
5
1,2 3 4 6,7
A B C D

Figure 176: A quad tree

9 COLLISION DETECTION AND REACTION 236

2D Game Development: From Zero To Hero

The rules to follow in a quad tree are simple, both in filling and retrieval. When we are filling a quad tree:

* Each node starts by being inserted in the root;
« If the root is “full” (exceeds a set quantity of nodes), it “splits” into 4 sub-trees;

* If a node would fit in two quadrants (like #5), it gets put inside the parent of both quadrants.

When we are retrieving the nodes we will know that an object inside a certain node can collide only with the objects

in the same nodes or in the subtree rooted at such node.

With the original brute force method, we will make at most 49 tests for 7 items (although it can be optimized), while

with quad trees we will perform:

* 6 Tests against node 5 (5-1, 5-2, 5-3, 5-4, 5-6, 5-7);

¢ 1 Test against node 1 (1-2);

¢ 1 Test against node 2 (2-1);

* No tests against node 3, because it’s on its own and there are no subtrees;
* No tests against node 4, for the same reason;

¢ 1 Test against node 6 (6-7);

e 1 Test against node 7 (7-6).

For a total of 10 tests, which can be further optimized by avoiding testing pairs of objects that have already been
tested. But this is if we want to test all objects for collision against all other objects (thus it is a somewhat more

optimized “brute force”).

9.3.2.1 A more precise definition

To be more precise, quad-trees are part of the group of “spatial acceleration structures”. They are structures that

are usually used on top of other containers (like arrays) to accelerate or reduce the number of accesses.

For example, you may have an existing array and using pointers you can use a quad-tree to quickly refer to the place

in memory a certain object is.

v v v v

INCON N

Figure 177: Quad trees as spacial acceleration structures

Redundancy will help us making things quicker and easier, adding a pointer from the underlying data structure back

to the quad-tree will help us understanding where an object is positioned.

9 COLLISION DETECTION AND REACTION 237

2D Game Development: From Zero To Hero

v v v v

NSNS AN

3 4 6 7

Figure 178: Redundancy in quad-tree pointers

9.3.2.2 Querying quad trees
Where quad trees shine is when we have an object and we want to check for collisions with any other object.

Using our “back pointer” we can refer back to the quad tree and severely limit the number of collision tests: any

object will be able to collide only with its ancestors or descendants.

[This section is a work in progress and it will be completed as soon as possible]

9.3.3 Building AABB-Trees

Another way to efficiently execute a broad-phase collision detection is by building trees containing Axis-Aligned

Bounding Boxes.

The main idea is similar to what we've seen with binary search trees, mixed with the quad-trees we've just talked
about: we are trying to keep track of objects that are close together (like Quad-Trees do) and when searching, we

try to eliminate a good portion of data each time we descend the tree (similarly to binary search trees).

This is done by calculating a “cost function” every time we insert an object into the tree: our objective is making the
cost as little as possible. An idea for the cost function could be the size of the rectangle (expressed by its perimeter,

or just width + height).

Our example image, would be represented this way:

9 COLLISION DETECTION AND REACTION 238

2D Game Development: From Zero To Hero

Figure 179: How an AABB-tree would process our example image

This can look a bit confusing, let's see how the tree would look like:

/\

Figure 180: How a possible AABB-tree structure would look like

The performance of this tree is tightly related to its “balancing”: differently from other types of “balanced trees”,
AABB-trees rely on how evenly each parent node is split by its children (instead of the usual “depth” metric). If
an AABB-tree doesn’t split evenly, the algorithm won’t be able to “exclude” as many nodes on each iteration, thus

degrading to a brute-force method (trying the given AABB against all other bounding boxes).

9.3.3.1 Querying AABB-trees

The idea behind this type of tree is making queries as fast as we can, and that can be done by checking on smaller
rectangles on every iteration of our search algorithm. For instance we can find a list of possible colliding entities

with a given bounding box in only a few tests (in our example).

Let’s take for instance a circle “P” that is exactly between the points 3 and 4:

9 COLLISION DETECTION AND REACTION 239

2D Game Development: From Zero To Hero

Figure 181: Example of a search in an AABB-Tree

First we do the root test, to see if it may collide with any of the 7 circles we have (if it was outside of the green
rectangle, we would have finished already). Then we do the “left (cyan) child” test, in this case we're not colliding

with the relative bounding box, so we keep going.:

Figure 182: Querying an AABB-tree (1/3)

This way we excluded 1,2,6, and 7. We now do the “right (cyan) child” test, we’re colliding with the relative bounding

box, we continue on this branch.

9 COLLISION DETECTION AND REACTION 240

2D Game Development: From Zero To Hero

0°°

Figure 183: Querying an AABB-tree (2/3)

We do the “left (red) child” test, we're colliding with the relative bounding box, now we can do a narrow-phase

collision detection with the leaves of this node (and in the meantime we also excluded 5).

0@6

Figure 184: Querying an AABB-tree (3/3)

[This section is a work in progress and it will be completed as soon as possible]

9.3.4 Collision groups

[This section is a work in progress and it will be completed as soon as possible]

9 COLLISION DETECTION AND REACTION 241

2D Game Development: From Zero To Hero

9.4 Other Collision Detection Methods
9.4.1 Calculating the position of tiles

When you are using tiles to build a level, being able to use quad trees or brute force methods to limit the number of

collision checks inside your game may be harder than other methods.

Using a bit of math is probably the easiest and most efficient method to find out which collisions happened.

Let’'s take an example level:

Figure 185: Example tile-based level

If a game entity is falling, like in the following example:

Figure 186: Tile-based example: falling

Using the simple AABB collision detection, we will need to check only if the two lowest points of the sprite have

collided with any tile in the level.

First of all let’s consider a level as a 2-dimensional array of tiles and all the tiles have the same size, it is evident

9 COLLISION DETECTION AND REACTION 242

2D Game Development: From Zero To Hero

that we have two game entities that work with different measures: the character moves pixel-by-pixel, the ground

instead uses tiles. We need something to make a conversion.

Assuming TILE_WIDTH and TILE_HEIGHT as the sizes of the single tiles, we’ll have the following function:

Listing 62: Converting player coordinates into tile coordinates

1 constant TILE_WIDTH = 32;
2 constant TILE_HEIGHT = 32;

4+ function convert_pixels_to_tile(int x, int y) -> int[1{

5 // Converts a point into tile coordinates
6 int tile_x = floor(x / TILE_WIDTH);

7 int tile_y = floor(y / TILE_HEIGHT);

8 return [tile_x, tile_y];

s }

To know which tiles we need to check for collision, we just have to check the two red points (see the previous image),

use the conversion function and then do a simple AABB check on them.

Listing 63: Tile-based collision detection

1 constant TILE_WIDTH = 32;
2 constant TILE_HEIGHT = 32;

4 structure Rectangle{

5 // A rectangle will represent the player
6 Point corner;

7 int width;

8 int height;

s }

10

1 function convert_pixels_to_tile(int x, int y) -> int[1{

12 // Converts a point into tile coordinates
13 int tile_x = floor(x / TILE_WIDTH);

14 int tile_y = floor(y / TILE_HEIGHT);

15 return [tile_x, tile_y];

16}

17
18 // We assume the player is falling, so no check will be shown here

19 Point[] points_to_check = [

20 Point(player.corner.x, player.corner.y + player.height),

21 Point(player.corner.x + player.width, player.corner.y + player.height),

2]

23 for (each point in points_to_check){

24 int[] detected_tile_coordinates = convert_pixels_to_tile(point.x, point.y)

25 Tile detected_tile = get_tile(detected_tile_coordinates[0], detected_tile_coordinates[1])
26 if (AABB(player, detected_tile.rectangle)){

27 // React to the collision

28 //

9 COLLISION DETECTION AND REACTION 243

2D Game Development: From Zero To Hero

29 }

Considering that this algorithm calculates its own colliding tiles, we can state that its complexity is 0(n) with n equal

to the number of possibly colliding tiles calculated.

If an object is bigger than a single tile, like the following example:

Figure 187: Example tile-based level with a bigger object

We will need to calculate a series of intermediate points (using the TILE_WIDTH and TILE_HEIGHT measures) that will be

used for the test

Figure 188: Tile-based example with a bigger object: falling

And using the same method the colliding tiles can be found without much more calculations than the previous

algorithm, actually we can use exactly the same algorithm with a different list of points to test.

9 COLLISION DETECTION AND REACTION 244

2D Game Development: From Zero To Hero

9.4.2 The “Tile + Offset” Method

This is a really good trick that works well for games that are heavily based on grids: the player can move only in the

four cardinal directions and movement is tile-based.

By “tile-based movement” | mean that if you press any direction for even the smallest amount of time (even a single

frame), the player will move in that direction by a tile (however big it may be).

The idea behind this kind of collision detection is very simple: some tiles are marked as walls. When the player
wants to move in a certain direction, the game will check the tile in the chosen direction, if it's a wall the movement
will be blocked, if it's passable the game will tween (usually using an offset parameter) the player travelling between

tiles.

Listing 64: Tile + Offset collision detection

1 class TiledPlayer{

2 Vector2D offset = new Vector2D(0, 0);

3 Vector2D current_position = new Vector2D(10, 10);

4 Vector2D next_position = new Vector2D(10, 10);

5

6 function update(float dt){

7 //

8 // Check which direction is the player going

9 if (KEYBOARD.Up_Arrow_Pressed){

10 this.offset.y = -1;

1 3

12 if (KEYBOARD.Down_Arrow_Pressed){

13 this.offset.y = 1;

14 3

15 if (KEYBOARD.Right_Arrow_Pressed){

16 this.offset.x = 1;

17 }

18 if (KEYBOARD.Left_Arrow_Pressed){

19 this.offset.x = -1;

20 }

21 // Get the destination tile

22 this.next_position = this.current_position + this.offset;
23 // Is the tile a wall?

24 if (not MAP.get_tile(this.next_position).isWall()){
25 // No, move the player to the new tile

26 this.current_position = this.next_position;
27 }

28 //

29 3

E

This code shows only how to update the internal status of the player, which is what we care about. As you can
see, the code is extremely simple, which makes for a great collision detection algorithm that doesn’t use a lot of

resources. This algorithm can be extended and improved by handling collision with anything else that isn’t a wall

9 COLLISION DETECTION AND REACTION 245

2D Game Development: From Zero To Hero

(maybe enemy units?).

9.5 Collision Reaction/Correction

When you are sure, via any algorithm, that a collision has occurred, you now have to decide how to react to such
collision. You may want to destroy the player or the target, or you may want to correct the behaviour, thus avoiding

items getting inside walls.

9.5.1 HitBoxes vs HurtBoxes

First of all, we need to explain the difference between a “HurtBox” and a “HitBox".

Such difference can be more or less important, depending on the game that is coded, and sometimes the two

concepts can be confused.

A HitBox is a shape (usually a rectangle, see Collision Between Two Axis-Aligned Rectangles (AABB)) that is used
to identify where a certain entity can hit another entity. For the player a “hitbox” could encase their sword while

attacking.

A HurtBox is instead a shape that is used to identify where a certain entity can get hurt by another entity. For the

player a “hurtbox” could be their body.

Figure 189: Example of a hitbox (red) and a hurtbox (blue)

9.5.2 Collision Reaction Methods

It has happened: a collision occurred and now the two objects are overlapping.

How do we react to this event in a convincing (not necessarily “realistic”) and efficient manner? There are a lot of

methods to react to collisions and below we will show some of the most used, along with some interesting ones.

We will use the following image as reference for each collision reaction:

9 COLLISION DETECTION AND REACTION 246

2D Game Development: From Zero To Hero

Figure 190: Images used as a reference for collision reaction

We will study each case separately, at the time the collision is detected (so the two objects are already interpene-

trating), and each case will be a piece of this reference image.

9.5.2.1 A naive approach

This is the simplest method we can think of: as soon as the object gets inside of a wall, you push it back to one of

the edges of the block, while keeping an eye on the direction it’'s moving.

9.5.2.1.1 How it works

This works when you treat the x and y axis separately, updating one, checking the collisions that come up from it,

update the other axis and check for new collisions.

Listing 65: Code for the naive collision reaction

10

11

12

13

14

16

17

18

19

20

// Naive collision reaction with rectangles
function update(float dt){
//
player.position = player.position + player.speed * dt;
// Refer to your favourite collision detection and broad/fine passes
if (collision(player, object)){
if (player.x_speed > 0){ // going right
player.position.x = object.rectangle.left; // reset position
player.x_speed = 0; // stop the player
}
if (player.x_speed < 0){ // going left
player.position.x = object.rectangle.right; // reset position

player.x_speed = 0; // stop the player

}
// Again, refer to your favourite collision detection and broad/fine passes
if (collision(player, object)){
if (player.y_speed > 0){ // going down
player.position.y = object.rectangle.top; // reset position

player.y_speed = 0; // stop the player

9 COLLISION DETECTION AND REACTION 247

2D Game Development: From Zero To Hero

22

23

24

25

26

27

28

3
if (player.y_speed > 0){ // going up
player.position.y = object.rectangle.bottom; // reset position

player.y_speed = 0; // stop the player

//

9.5.2.1.2 Analysis

Let’'s see how this method reacts in each situation.

When we are trying to slam against the wall, this method works as follows:

No need to react on the

React on the X Axis Y Axis, collision is resolved

Figure 191: How the naive method reacts to collisions against a wall

. We separate our position vector in its x and y components.

. We check for collisions, and if so, we react on the x axis in a direction opposite to the x component of the

velocity.

. We check for collisions again, if there are any, we react on the y axis, in a direction opposite to the y component

of the velocity.

9.5.2.1.3 Problems

Problems arise when we try to use the same method to react to a collision on a horizontal plane. In that case reacting

on the x axis first will bring some unexpected surprises.

9 COLLISION DETECTION AND REACTION 248

2D Game Development: From Zero To Hero

Reacting on the X axis
doesn't look right

Figure 192: How the naive method reacts to collisions against the ground

We need to find a way to decide which axis we should correct first.

9.5.2.2 Shallow-axis based reaction method

This method works in a similar fashion to the naive method, but prioritizes reactions on the axis that shows the

shallowest overlap.

This requires measuring how much the objects overlap on each axis, which can be a little more involved, but not

really expensive.

Figure 193: Example of shallow-axis based reaction on a horizontal plane

In the previous picture, we can see how the algorithm chooses to solve the collision on the y axis first and only on

the x axis after; but since solving the y axis solves the collision, no reaction is performed on the x axis.

9 COLLISION DETECTION AND REACTION 249

2D Game Development: From Zero To Hero

Figure 194: Example of shallow-axis based reaction on a vertical plane

In this new situation, the algorithm chooses to solve the collision on the x axis first; but since solving the x axis

solves the collision, no reaction is performed on the y axis.

Listing 66: Possible implementation for a shallow axis collision reaction

1 function solve_collision(player, object){

2 /%

3 * This algorithm solves a collision between the player
4 * and an unmovable object

5 * We are assuming the player is moving

6 */

7 // The overlap will help us decide how to react

8 Vector2D overlap = get_overlap(player, object);

9 if (overlap.x > overlap.y){

10 // Y is the "shallow axis"

1 if (player.speed.y > 0){

12 // Player is going towards the bottom of screen
13 player.rect.bottom = object.rect.top;

14 Yelse{

15 // Player is going towards the top of the screen
16 player.rect.top = object.rect.bottom;

17 }

18 Yelse{

19 // X is the "shallow axis"

20 if (player.speed.x > 0){

21 // Player is going right

22 player.rect.right = object.rect.left;

23 Yelse{

24 // Player is going left

25 player.rect.left = object.rect.left;

26 }

27 3

8 }

9 COLLISION DETECTION AND REACTION 250

2D Game Development: From Zero To Hero

9.5.2.3 Interleaving single-axis movement and collision detection

This is a method quite simple to understand: you split the movement in its and y components, move on the first

component, check and react, move on the other component, check and react again.

9.5.2.3.1 How it works

This works by treating the x and y axes separately, updating one, checking the collisions that come up from it,

update the other axis and check for new collisions.

Listing 67: Code for interleaving movement and collision reaction

1 // Interleaving movement and collision reaction with rectangles

> function update(float dt){

3 //

4 player.position.x = player.position.x + player.x_speed * dt;

5 // Refer to your favourite collision detection and broad/fine passes
6 if (collision(player, object)){

7 if (player.x_speed > 0){ // going right

8 player.position.x = object.rectangle.left; // reset position
9 player.x_speed = 0; // stop the player

10 }

1 if (player.x_speed < 0){ // going left

12 player.position.x = object.rectangle.right; // reset position
13 player.x_speed = 0; // stop the player

14 3

15 3

16 player.position.y = player.position.y + player.y_speed * dt;

17 // Again, refer to your favourite collision detection and broad/fine passes
18 if (collision(player, object)){

19 if (player.y_speed > 0){ // going down

20 player.position.y = object.rectangle.top; // reset position
21 player.y_speed = 0; // stop the player

22 }

23 if (player.y_speed > 0){ // going up

24 player.position.y = object.rectangle.bottom; // reset position
25 player.y_speed = 0; // stop the player

26 }

27 3

28 //

20 3}

9.5.2.3.2 Analysis

Let’'s see how this method reacts in each situation.

When we are trying to fall on the ground, this method works as follows:

9 COLLISION DETECTION AND REACTION 251

2D Game Development: From Zero To Hero

Figure 195: How the the interleaving method reacts to collisions on a horizontal plane

. We divide the movement vector in its x and y components.
. We move along the x axis and check for collisions, in this case there are none.

. We move along the y axis, after checking for collisions we find that we are colliding on the ground.

A W N R

. We react to the collision by moving the sprite on top of the ground.

9.5.2.4 The “Snapshot” Method

This method is a bit more involved, but allows for a finer control over how you go through or collide with certain

obstacles.

The secret to this method is taking a snapshot of the object’s position before its update phase and do a series of

comparisons with the position after the update.

Listing 68: Example of the "snapshot” collision reaction method

1 // Snapshot collision reaction
2 // All the sprite origins are on the top-left corner of the entity

3 Player snapshot = player_instance.copy(); // The "snapshot"

s // Update the player_instance here

¢ player_instance.position = player_instance.position + (velocity * dt);

s // Now check for collisions

10 for (each block colliding with player_instance){

1 if ((snapshot.y >= block.y + block.height) AND (player_instance.y < block.y + block.height))
{

12 // We are coming on the block from below, react accordingly

13 // Ignoring this reaction will allow players to phase through blocks when coming from
below

14 player_instance.position.y = block.y + block.height;

15 3

16

17 if ((snapshot.y + snapshot.height <= block.y) AND (player_instance.y + snapshot.height >
block.y)){

18 // We are coming on the block from above

19 player_instance.position.y = block.y;

20 player_instance.on_ground = true;

21 }

22

23 if ((snapshot.y + snapshot.width <= block.x) AND (player_instance.x > block.x)){

9 COLLISION DETECTION AND REACTION 252

2D Game Development: From Zero To Hero

24 // We are coming on the block from left

25 player_instance.position.x = block.x - player_instance.width;

26 3

27

28 if ((snapshot.y >= block.x + block.width) AND (player_instance.x < block.x + block.width)){
29 // We are coming on the block from right

30 player_instance.position.x = block.x + block.width;

31 }

32 }

This method solves the problem given by platforms that can be crossed one-way, since (differently from methods
based on the direction of velocity) you have an additional information: if you were colliding with the object in the

previous frame.

[This section is a work in progress and it will be completed as soon as possible]

9.5.3 When two moving items collide

So far we’ve seen methods that involve a moving object colliding with a stationary one, but what if we wanted to

react to a collision between two moving objects?
Some more math will be needed but it's not extremely difficult to pull off.

First of all, we need to find the “collision vector” (we’ll call that w.,;;), which is simply a vector that is calculated
using the difference of the objects’ positions. We’'ll need just the direction, so we will normalize it too (so it will

become U.qy1)-

Let’s imagine two objects, with the following positions: A(z1,y1) and B(z2, y2)

Ucoll = (332 —T1,Y2 — yl)

R U
Ucoll = m

Now we need to know how the objects are moving in relation to each other, this will allow us to see if and how we

need to react. Let’s calculate the “relative velocity” of the objects.

Vrel = (Ua;2 — VUgzl, Uy2 — Uyl)

Now we need to see how the relative velocity affects the collision, which means we need to project such velocity

onto the collision vector. Sounds like a job for the dot product.

S = Ucoll * Vrel

9 COLLISION DETECTION AND REACTION 253

2D Game Development: From Zero To Hero

s can be called “the speed of collision” (it's a scalar number, not a vector) and tells us what we need to know: if
s < 0 then the objects are moving away from each other already and we don’t need to do anything. If s > 0 then

the objects are moving towards each other
To react to objects that are moving towards each other, we just need to change their velocity by a factor of s - .

[This section is a work in progress and it will be completed as soon as possible]

9.6 Common Issues with time-stepping Collision Detection

The methods we saw so far when checking for collisions are called “time-stepping techniques” due to the fact that
each loop we “take a snapshot” of the situation and analyze it, this opens the door to a series of issues that may be

annoying and we may find in our game development endeavors.

9.6.1 The “Bullet Through Paper” problem

The “bullet through paper” (sometimes called “tunneling”) is a common problem with collision detection, when an
obstacle is really thin (our “paper”), and the object is really fast and small (the “bullet”) it can happen that collision

is not detected.

= I .

Frame "n" Frame "n+1"

Figure 196: Example of the “Bullet through paper” problem

The object is going so fast that it manages to go through the entirety of the obstacle in a single frame.

Possible solutions to this problems are various, some even going out of the realm of the so-called “time-stepping

techniques” (like speculative contacts or ray casting) that can be very expensive from a computational standpoint.

Such solutions should therefore be enabled (or implemented) only for fast-moving objects and only if necessary,

since resources and time are at a premium in most cases.

9.6.2 Precision Issues

Sometimes it can happen that the position is reset incorrectly due to machine precision or wrong rounding, this can
lead to the character that looks spazzy or just going through the floor at random times. The solution to these issues
is making sure that the position and state are set correctly so that there are no useless state changes between

frames.

9 COLLISION DETECTION AND REACTION 254

2D Game Development: From Zero To Hero

Sometimes the “spazziness” of the character derives from the fact that collision reaction sets the character one
pixel over the floor, triggering the “falling” state, the next frame the state would be changed to “idle” and then in

the frame “n+2" the cycle would restart with collision reaction putting the character one pixel over the floor.

9.6.3 One-way obstacles

Some of the methods exposed can be used only with completely solid obstacles. If you want to make use of platforms
that you can cross one-way you should pay attention, since you may get teleported around when your velocity

changes direction.

Figure 197: How velocity changing direction can teleport you

In the previous example we try to jump on a platform by going through it, but our jump quite doesn’t make it. Since

velocity has changed direction, we end up being teleported over the platform, which is considered a glitch.

9.7 Separating Axis Theorem

We have taken an in-depth look at a series of specialized algorithms, but there is a more generic theorem that allows

us to determine if two convex polygons are colliding: The Separating Axis Theorem or SAT. This theorem states:

If two convex objects are not penetrating, there exists an axis for which the projection of the objects will not

overlap.

This is connected to a simpler “human” explanation, which is:

I If two convex polygons are not colliding, then you can draw a straight line between them.

9 COLLISION DETECTION AND REACTION 255

2D Game Development: From Zero To Hero

Figure 198: Example of how you can draw a line between two convex non-colliding polygons

Before delving further into the matter, let’'s see what we need to know:

¢ The difference between a Convex and a Concave Polygon
* What a Projection is

¢ Some Vector Maths

9.7.1 Why only convex polygons?

To explain this, we’'ll use the “human explanation”: if one of the shapes is concave, there is a possibility that the

polygons are not colliding, but we cannot draw a straight line between them.

Figure 199: Why the SAT doesn’t work with concave polygons

Thus our algorithm would return a collision where there is none.

‘ This problem can be solved by “decomposing” the concave polygons in two or more

convex polygons, but for the sake of simplicity we’ll assume all polygons we are check-

ing for collisions are convex.

Now let’s check the more “technical explanation”.

9 COLLISION DETECTION AND REACTION 256

2D Game Development: From Zero To Hero

9.7.2 How it works

Let’s read the definition of the separating axis theorem again and break it down:

If two convex objects are not penetrating, there exists an axis for which the projection of the objects will not

overlap.

The first part defines the condition: in case two objects are not colliding, then what follows is true.

For what we were concerned so far, axes were “aligned to the screen boundaries”, but axes can actually have

different orientations and we can project shapes onto them.

The condition in our definition is represented as follows:

Figure 200: How the SAT algorithm works

As we can see, we have found an axis (which in this case is slanted) where the projection of the two shapes don’t
overlap. The presence of this axis where the projections don't overlap is guaranteed by the fact that the two polygons

don’t collide.

Random Trivia!
We can now easily see why the “human explanation” is (for our own purposes) equiva-
lent to the “technical” one: we just need to take a single point inside the “gap” between
the two projections and strike a line perpendicular to our axis.

That's our “separating axis”.

9.7.2.1 Finding the axes to analyze

Now we only have a problem: we definitely can’t spend an infinite amount of time trying all possible combinations

in the hope of finding an axis where the projections don’t overlap.

The fact is: we don’t need to try them all. Actually we need to try just a few, as many as the sides of the polygons

involved.

9 COLLISION DETECTION AND REACTION 257

2D Game Development: From Zero To Hero

The axes we need to check are actually the axes parallel to the “normal of the polygon’s edges”. In layman’s terms:

the axes we need to check are parallel to lines which are perpendicular to the edges of our polygons.

Let’s take it step by step, first we find the “normals”, which are just unit vectors perpendicular to the edges of our

polygons.

Figure 201: Finding the axes for the SAT (1/2)

Now we just have to strike axes parallel to those normals, and those are the axes we will need to check against.

Figure 202: Finding the axes for the SAT (2/2)

In the previous pictures, | chose axes around the two polygons, for the sake of clarity.

9 COLLISION DETECTION AND REACTION 258

2D Game Development: From Zero To Hero

Pitfall Warning!

Do not think that the axes we found are 5: there actually are 10. This is due to the fact

 J

that the figures | chose (for the sake of cleanliness) are a rectangle and an hexagon,

which have edges that are parallel in groups of two.

9.7.2.2 Projecting the shapes into the axes and exiting the algorithm

Now, for each axis we found, we need to perform a projection of the two polygons onto such axis.

Figure 203: Projecting the polygons onto the axes

Now we consider each axis on its own and see if the projections overlap.

As soon as we find an axis where the two projections don’t touch (overlap), we know that the two polygons are not

colliding. Thus we exit the algorithm.
If all the axes we scan have overlapping projections, we can say that the polygons we’re analyzing are colliding.

In the example, we can find two axes that have non-overlapping projections, thus the worst case is that the algorithm

misses both of them 3 times in a row and exits at the fourth iteration.

Random Trivia!

If you use Axis-Aligned rectangles as your “polygons”, you will notice how the Separat-
ing Axis Theorem will degenerate into something very similar to a simple AABB collision
detection.

The only difference is that we’re checking a condition where the rectangles don’t col-

lide.

9 COLLISION DETECTION AND REACTION 259

2D Game Development: From Zero To Hero

Due to its nature, this algorithm has higher efficiency when there are few collisions, since it exits as soon as we find

a separating axis (a gap in the projections).

9.7.2.3 From arbitrary axes to “x and y”

The only thing that remains is how to switch from an “arbitrary axis” to our usual “x and y” axes. Here projections

will help us again: we can simply project our projections.

a

8

y

Figure 204: Projecting our projections onto the x and y axes

If we look closely, we’'re just projecting polygons onto a bunch of axes so that they get “flattened to lines”, then
we're projecting such lines onto the x and y axes to see if there those lines are touching or not.
9.8 Ray Casting

Sometimes it can necessary to use unusual techniques to detect collisions: ray casting is one of them. If well used

(and with some “illusion magic”), ray casting can be a nice way to solve the “bullet through paper” problem.

9.8.1 What is Ray Casting?

Mostly used in 3D, ray casting is a technique where you cast an imaginary ray (usually of light) until it hits something,

but its uses can go beyond that.

Let’s take for example shooting a simple bullet: this can give some issues when the “bullet” is small and fast, as

explained earlier in The bullet through paper problem.

First of all, let’s put up some (arbitrary) constraints that will help us making the computation easier and better

performing without giving away our tricks too easily.

9 COLLISION DETECTION AND REACTION 260

2D Game Development: From Zero To Hero

Our bullet will shoot from the barrel of our gun (duh!), but we also define a point where the bullet will despawn:
this will limit our ray length and make our algorithm perform better. We can still give an excuse such as “bullets
are affected by gravity” (which actually is true), and maybe use it as a difficulty management technique (stopping
people from sniping the enemy can make the game harder and force the player to play the game the way we, the

developers, want).

Where the bullet is
shot from

Bullet "falls on
the floor" due to
gravity

Figure 205: How Ray Casting Works: Gun (1/2)

Attached to our gun, is an invisible line (our ray), that will follow every movement of the gun itself

o~ ~¢

L

Figure 206: How Ray Casting Works: Gun (2/2)

When we want to shoot the gun, instead of using the previously stated “time-stepping techniques”, we perform a
line-to-rectangle (or line-to-circle, or whatever we find best) collision detection, at the same time we play a really

fast animation of the bullet shooting along the cast ray. If the cast ray hits an enemy, they’ll die (or get destroyed).

Tip!

If you find that the bullet animation won’t align well with the enemy dying, the anima-
‘ tion may not be fast enough. Some games even give up showing the bullet at all, and

instead show a white line for a split second, that fades away. The effect works really

well!

[This section is a work in progress and it will be completed as soon as possible]

9.8.2 Other uses for ray casting: Pseudo-3D environments

[This section is a work in progress and it will be completed as soon as possible]

9 COLLISION DETECTION AND REACTION 261

2D Game Development: From Zero To Hero

10 Scene Trees

Trees sprout up just about everywhere in computer science...

Donald Knuth

10.1 What is a scene

A scene usually represents a single screen in our game: it can be a menu or a single level. Many engines (like Godot)

make use of this kind of abstraction to “break down” a game into more manageable pieces.

The problem is that single scene can contain tens if not even hundreds of elements, thus efficient management is

necessary to avoid losing track of pieces of your game, as well as simplifying the drawing routines.

10.2 Scene trees and their functionalities

A scene tree is “yet another abstraction layer”: pieces of your level are arranged in a parent-child relationship, which

encourages composition-based approaches heavily, making the code more flexible and easier to maintain.

O Main
[«] Paral

[+ Paralla

® Paral

(O]
@
(O]
@
@
@
@
O]
@
O]
@
(O]
@
(O]

Figure 207: How a scene tree looks (specifically in Godot)

Each scene tree contains one or more “nodes” that represent a component of our level, like a sprite. These nodes

can be grouped “logically” but scene trees can bring a lot more to the table.

10.2.1 How scene trees can make drawing entities easier

Let’s imagine a game like the famous Galaxian: we have a ship that shoots aliens, and sometimes aliens can react
by “breaking formation” and attacking the player. Sometimes a single alien can break formation, sometimes it's a

group of three.

10 SCENE TREES 262

2D Game Development: From Zero To Hero

Figure 208: Example of a ship attack formation

The situation here is more complex than it seems: this “troop” has a “captain” leading two other ships, who are

following at a fixed distance and angle: so if the captain moves, the “soldier ships” move, if the leader rotates, the

“soldier ships” will rotate accordingly.

Figure 209: What happens when the ship attack formation rotates

This can quickly get messy, since we’ll have to rotate the leader according to the screen, then rotate the “soldier

ships” according to the leader first, and then to the screen.

Scene trees can be used to make things easier, each node will rotate in relation to its parent.

10.3 Implementing a scene tree

[This section is a work in progress and it will be completed as soon as possible]

10 SCENE TREES 263

2D Game Development: From Zero To Hero

11 Cameras

Nothing’s beautiful from every point of view

Horace

The great majority of games don’t limit the size of their own maps to the screen size only, but instead they have

maps way bigger than the screen.

To be able to manage and display such maps to the screen, we need to talk about cameras (sometimes called
“viewports”): they will allow us to show only a portion of our world to the user, making our game much more

expansive and involving.

11.1 Screen Space vs. Game Space

Before starting with the most used type of cameras, we need to distinguish between what could be called “screen

space” and what is instead “game space” (sometimes called “map space”).

Figure 210: Reference Image for Screen Space and Game Space!

We talk about “game space” when the coordinates of a point we are talking about are referred to the top-left corner

of the entire game (or level) map.

Instead we talk about “screen space” when the coordinate of such point are referred to the top-left corner of the

screen.

Looking at our reference image, we can see how different the coordinates of the magenta dot are in screen space

and in map space.

It is possible to convert screen space to map space and vice-versa by accounting for the viewport offset (represented

by the red dot in the reference image), like follows:

YJawbreaker tileset, listed as public domain at https://adamatomic.itch.io/jawbreaker

11 CAMERAS 264

https://adamatomic.itch.io/jawbreaker

2D Game Development: From Zero To Hero

screen coordinates = map coordinates — viewport coordinates

map coordinates = screen coordinates + viewport coordinates

In a more friendly way, we can see our viewport as a “window” that moves around the map. Alternatively, we can

see it as a viewport that is still all the time but has the map scrolling under it.

11.2 Cameras and projections

Advanced Wizardry!

This subsection gives a general idea on how cameras work in a 3D engine, but it is

definitely useful to better understand how cameras work in general.

Cameras are just an approximation of of how we see things as humans. This approximation is due to a number of

tradeoffs made to make things seem realistic, but avoid the issues that reality brings with itself.

Let’s look at how a person sees, in a somewhat schematic way:

O

Figure 211: How a person sees things

A person can see anything directly in front of their eyes, to infinity (or at least until something blocks their vision,

like a mountain, a building or fog).

We're definitely having a couple of problems: the first one is that we cannot represent infinity on a computer. If we

try to represent everything from the camera’s point of view to infinity, we won’t be able to play the game at all.

The second issue is very close objects: in real life an object that is right up to your face will cover your entire vision.

This may not be something that you want.

This is why computers render only things between two given planes, like the following:

11 CAMERAS 265

2D Game Development: From Zero To Hero

@ Rendered
Area

Close Far
Plane Plane

Figure 212: How videogame cameras see things

A videogame camera renders only what is situated between a “close plane” and a “far plane” (this means that
objects too close or too far from the camera will not be rendered). Moreover objects are projected onto the screen,

which may deform them if odd “Field of View” (FOV);4) values are used.

11.3 Most used camera transitions and types
11.3.1 Static Camera

This is the simplest camera we can implement: each level has the size of the screen (or of the virtual resolution we
decided, see Virtual Resolution), and every time we go out of the map, the screen fades to black and back to the

new “room”.

[This section is a work in progress and it will be completed as soon as possible]

11.3.2 Grid Camera

This is an improvement on the static camera formula, each level (or room) has the size of the screen (or virtual
resolution we chose), every time we go out of the map, the screen scrolls into the new section. This camera is used

by the first Legend Of Zelda game for the Nintendo Entertainment System.

[This section is a work in progress and it will be completed as soon as possible]

11.3.3 Position-Tracking Camera

This camera is a bit more involved: the viewport tracks the position of the player and moves accordingly, so to
keep the character centered on the screen. There are two types of position tracking cameras that are used in video

games: horizontal-tracking and full-tracking cameras.

This type of camera can has some serious drawbacks when sudden and very quick changes of direction are involved:
since the camera tracks the player all the time, the camera can feel twitchy and over-reactive; this could cause

uneasiness or even nausea.

11.3.3.1 Horizontal-Tracking Camera

11 CAMERAS 266

2D Game Development: From Zero To Hero

Horizontal-tracking cameras keep the player in the center of the screen horizontally, while jumps don’t influence
the camera position. This is ideal for games that span horizontally, since we won’t have the camera moving when

jumping and temporarily hiding enemies we may fall on.

Figure 213: Example of an horizontally-tracking camera

This is the camera used in the classic Super Mario Bros. for the Nintendo Entertainment System.

[This section is a work in progress and it will be completed as soon as possible]

11.3.3.2 Full-Tracking Camera

Sometimes our levels don’t span only horizontally, so we need to track the player in both axes, keeping it in the
center of the screen at all times. This is good for platformers that don’t require extremely precise maneuvering,

since precise maneuvering could result in way too much movement from the camera.

Figure 214: Example of a full-tracking camera

[This section is a work in progress and it will be completed as soon as possible]

11.3.4 Camera Trap

The “Camera Trap” system was invented to eliminate, or at least mitigate, the issues given by the position tracking
camera. The playable character is encased in a “trap” that, when “escaped” makes the camera catch up in an effort

to put the player back in such “trap”.

11 CAMERAS 267

2D Game Development: From Zero To Hero

The trap is represented by an invisible rectangle which can be visualized on screen in case you need to debug your

camera.

Figure 215: Example of camera trap-based system

This allows the camera to be less twitchy, giving a more natural sensation. Furthermore you can size the camera
trap according to the type of game you are coding: slow-paced games can have a larger camera trap, allowing for
the camera to rest more on the same screen, while faster paced games can have a smaller camera trap for faster

reaction times.

[This section is a work in progress and it will be completed as soon as possible]

11.3.5 Look-Ahead Camera

This is a more complex camera that is implemented when the playable character moves towards a certain direction
very quickly. The Look-Ahead camera is used to show more space in front of the player, giving more time to react

to upcoming obstacles or enemies.

Figure 216: Example of look-ahead camera

This camera needs a good implementation when it comes to changing direction: having a sudden change of direction
in the player character should have a slow panning response from the camera towards the new direction, or the game

will feel nauseating.

So this camera is not ideal for games that require precision platforming, since the continuous “corrections” required

to hit a tight platform would move the camera around too much, giving the player nausea.

11 CAMERAS 268

2D Game Development: From Zero To Hero

[This section is a work in progress and it will be completed as soon as possible]

11.3.6 Hybrid Approaches

There are hybrid approaches to cameras too, mixing and matching different types of camera can give your game an
additional touch of uniqueness. For instance in “Legend of Zelda: A link to the past”, the camera is a mix between a
“camera trap” and a “grid camera”, where each zone is part of a grid, and inside each “grid cell” we have a tracking

system based on the “camera trap”.

This allows the game to have a more dynamic feel, but also saves memory, since the SNES had to load only one

“zone” at a time, instead of the whole map.

Another idea would be using an “out-of-center” camera trap that changes position according to how the player

“escapes the camera trap”, thus solving some of the biggest issues of the look-ahead camera.

Feel free to experiment and invent!

11.4 Clamping your camera position

Whichever type of camera you decide to make use of (besides the static and grid cameras), there may be a side
effect that could not be desirable: the camera tracking could follow the player so obediently that it ends up showing

off-map areas.

Figure 217: How the camera may end up showing off-map areas

Off-map areas may be shown as black in many cases, but in other cases (when the screen is not properly “cleared”)

the off-map area can show glitchy versions of the current map.

11 CAMERAS 269

2D Game Development: From Zero To Hero

In this case, it will be necessary to “clamp” the camera position, this way it will still follow the player, but won’t show

off-map areas.

This usually just involves a check on the viewport boundaries against the map boundaries, followed by a reset of the

coordinates to the map boundaries.

11 CAMERAS 270

2D Game Development: From Zero To Hero

12 Game Design Tips

There are three responses to a piece of design - yes, no, and WOW! Wow is

the one to aim for.

Milton Glaser

Game design is a huge topic, in this section we will just dip our toes into the argument, talking about some genres
and features in games, including some tips and tricks that can make the difference between a “good” and a “bad”

experience.
In this section we will also talk about level design tips, tricks and common pitfalls to avoid. We will talk about tutorials,

entertaining the player and ways to reward them better.

12.1 Tutorials
12.1.1 Do not pad tutorials

Tutorials are meant to introduce the player to the game’s mechanics, but a bad tutorial can ruin the experience.

Tutorials should be comprehensive but also compact, padding tutorials should absolutely not be a thing.

Gloss over the simpler things (usually the ones that are common to the genre) and focus more on the unique

mechanics of your game.

Avoid things like:

Use the “right arrow” button to move right, the “left arrow” button to move left, use “up arrow” to jump, use

“down arrow” to crouch
Instead use:
I Use the arrows to move.

And eventually present the more complex mechanics in an “obstacle course” fashion.

12.1.2 Integrate tutorials in the lore

Tutorials are better when well-integrated in the lore, for instance if your game features a high-tech suit maybe you

should make a “training course” inside the structure where such suit was invented.

By integrating the tutorial into the game world, it will feel less of a tutorial for the player, but more like training for
the game’s protagonist.

12.1.3 Let the player explore the controls

Sometimes it’s better to allow the player to explore the controls, by giving them a safe area to try: this area is usually

a tutorial or a specific training area.

12 GAME DESIGN TIPS 271

2D Game Development: From Zero To Hero

It can prove more effective to avoid spoon-feeding your player with all the moves, and just let them explore the core

mechanics of the game by themselves, eventually assisted by an in-game manual of some sort.

So instead of doing something like (thinking about a 2D tournament fighter):

Do —\,| + A to do a chop attack

Do — "1 + A to do an uppercut

Try something like:

Do — 1 + A to do an uppercut
Try more combination with your arrows and the attack buttons for more moves

Check the move list in the pause menu

12.2 Consolidating and refreshing the game mechanics
12.2.1 Remind the player about the mechanics they learned

There's a latin saying that goes “repetita juvant”, which means “repeating does good”.

A good idea is to sprinkle around different levels concepts that have been learned previously, so to remind and
consolidate them. This is more effective when done shortly after learning a new mechanic.
12.2.2 Introduce new ways to use old mechanics

After a while, old mechanics tend to become stale, to rejuvinate them we can apply such mechanics to new problems.

Changing their use slightly can make an old experience new again.

For instance, knowing that shooting our magic beam against something on the ceiling will make it drop (usually
killing an enemy), we can make the player use such envinronmental interactivity to drop a suspended weight to

open a door, or shoot a bell to “force” a change of guard so to sneak stealthily.

12.3 Rewarding the player
12.3.1 Reward the player for their “lateral thinking”

A good idea could be rewarding the player for not throwing themselves “head first” into the fight, but instead thinking

out of the box and avoid the fight altogether, or just win it differently.

Putting a very powerful enemy in front of some treasure (for instance currency used in-game) can seem unfair, unless

you place an unstable stalactite that can be shot with your magic beam.

Your magic beam won’t deal enough damage to the enemy to kill it before such enemy takes your life, but a stalactite
on their head will do the trick, and the reward for such lateral thinking will be a heap of coins (or gems, or whatever

currency you invented).

12 GAME DESIGN TIPS 272

2D Game Development: From Zero To Hero

VWAV

Figure 218: Example of how to induce lateral thinking with environmental damage 2 3 *

Giving tips to the player by breaking the fourth wall can be another idea, a rock or a patch of dead grass conveniently

shaped like an arrow could point towards a secret room that has a fake wall.

Figure 219: Example of how to induce lateral thinking by “breaking the fourth wall” ®

This last tip should be done very subtly, so not to ruin the immersion. Unless your game takes advantage from these
kind of things (for instance games based on comedy).
12.3.2 Reward the player for their tenacity

After suggesting to reward players for not butting head-first into fights, now I’'m going to suggest the exact opposite

(in a way): reward your players for their tenacity.

Beating a tough boss with a certain (weak) weapon, or just the plain tenacity and skill that is needed to undertake a

hard task, such feats should be rewarded: for instance with a powerful weapon that can be used after some level-ups.

232x32 Chests attribution: Bonsaiheldin (http://nora.la), hosted at opengameart

3Simple SVG ice platformer tiles, listed as “Public Domain (CCO0)” at OpenGameArt.org

*Fossil (Undead) RPG Enemy Sprites attribution: Stephen Challener (Redshrike), hosted by OpenGameArt.org
5Jawbreaker tileset, listed as public domain at https://adamatomic.itch.io/jawbreaker

12 GAME DESIGN TIPS 273

http://nora.la
https://opengameart.org/content/treasure-chests-32x32
https://opengameart.org/content/simple-svg-ice-platformer-tiles-16x16-16x96-96x16
https://opengameart.org/content/fossil-undead-rpg-enemy-sprites
https://adamatomic.itch.io/jawbreaker

2D Game Development: From Zero To Hero

12.3.3 Reward the player for exploring

Exploration can lead the player to discover secrets, which can range from simple gear, to pieces of unexplored

environment, or even pieces of the game’s lore.

World exploration should not be limited to simple secrets, a nice idea could be finding a path towards something that
is usually considered “environmental damage” (like a catapult in the background) so that the player can deactivate

it.
Thinking out of the box can lead to some really interesting results when it comes to this tip.

12.3.4 Reward the player for not immediately following the given direction

This is an extension of the previous point, the player should be rewarded for their exploratory efforts, even more

when those efforts mean not immediately following the direction given by the designer.

“Thinking differently” should be rewarded with challenge and rewards up to said challenge. If the mission tells a
player to climb up a tower, the more curious players could be led to hit the tower’s underground dungeon before going
on with the mission. A nice challenge in such dungeon with a fittin reward could expand on the game experience.

12.3.5 Reward the player for not trusting you entirely

Sometimes it can be fun, for both the game designer and the player, to play a bit of a trick to the player themselves.

Some famous games, like DOOM and Dark Souls, use secrets-in-secrets to trick players into thinking they found

something valuable, while hiding something way more important. Let’'s see the example below.

Real Treasure, New Map Area...

Decoy
Treasure

Main Room

Figure 220: Example of secret-in-secret

12 GAME DESIGN TIPS 274

2D Game Development: From Zero To Hero

We can see how we hid a secret inside of another secret and used a piece of valuable (but not too valuable) treasure

to make the player think they found the secret, while the real secret is hiding behind another fake wall.

12.3.6 Reward Backtracking (but don’t make it mandatory!)

To make the game’s experience broader and richer, you may want to reward the player’s exploration efforts by hiding

treasure behind some backtracking.

For instance you can show the player a locked door somewhere in the level, such door will unlock and open after
beating a boss monster or a wave-based challenge in the next room and hide some weapons that would otherwise

be unlocked further into the game.

A nice idea would be “suggesting” to the player that something interesting happened, by playing the sound of the
door opening as soon as the event is triggered. Another idea would be showing the player that the door opened (for
instance if you're in an open area, the player would be able to see clearly an open gate that was definitely closed

before).

The most important thing to remember is that all of this needs to be optional, a reward for the player’s willingness to
explore your levels further: avoid making backtracking mandatory, this will only feel like you're “padding the game”

with nothing worth of note.

The player is paying you with their time and effort, it’s only right that you pay them back with a pleasurable experi-

ence.

Random Trivia!
A nice example of backtracking bonuses (although mandatory to 100% the game) is
used in the level “Sphynxinator” in Crash Bandicoot 3: Warped.
When you start the level, you can run backwards and you’ll find 4 crates (which are
necessary to get the “Gem” and 100% the game, but not mandatory for the normal
ending), one of which is an extra life.

The backtracking is really short and gives you a nice bonus.

12.3.7 The “lives” system

Extra ships, 1-ups, extends, continues: these are all instances of what we can call the “lives system”. This system

gives a more “arcade feel” to your game and adds an important challenge factor to it.

Without something that threatens a game over, beating the game is no longer a challenge, but it's a matter of time.

When overcoming a challenge is inevitable, it is not a challenge anymore, and the player will end up losing interest.

This is what the “lives system” is for: it's a “sword of Damocles”, hanging over the player’s head, continuously

threatening a “game over” and pushing the player to do their best in order to get as far into the game as possible.

“Continues” are just “a lives system for your lives”, they're in a very limited number (or have a price, like putting

another quarter into the arcade cabinet) and allow you to “continue the game” with a new set of “lives” without

12 GAME DESIGN TIPS 275

2D Game Development: From Zero To Hero

losing your progress.

As with all things in video games, it doesn’t need to bring real challenge, but just the “illusion” of it.

Furthermore, lives and continues are a great tool to reward your player for their efforts: giving them an extra life
every 20.000 points, granting a continue for a no-hit boss battle, putting a bunch of 1-ups in a hard-to-reach place

are all great ways to challenge and reward your player and give your game more depth.

12.3.7.1 1-UPs

When a life system is in place, getting an extra life (a so-called 1-UP) is cause for celebration, since it allows the

player to get further into the game or play with new and bolder strategies or just feel more at ease.

There are many ways you can reward the player with an extra life, such as:

* Finding a secret;
* Reaching a certain score threshold (for example every 100.000 points);
* Finding a certain item (a “physical 1-UP");

* Complete a certain combo-chain (for example kill over 8 enemies without touching the ground);

No matter how the 1-UP is achieved, this should be celebrated with a jingle that is very recognizable: this will allow
the player to “know” that they got a 1-UP without thinking too hard about it. Not “celebrating” this event would

make it “ordinary” and uninteresting, while it's extremely important in the grand scheme of things.

Some games even go as far as temporarily pause the game while the (short) jingle plays, that how important an

extra-life is: “Stop everything! We got a 1-UP here!”.

12.3.7.2 Other approaches

There are different approaches to a “lives system” that don’t necessarily involve lives. The main objective is creating
a mechanic that rewards the player for doing the right thing and punish them for doing the wrong thing (although

not too harshly, or the player will stop playing).

One such approach was used in the first System Shock (1994) game: the space station the game takes place in
is divided into floors. Each floor (with few exceptions) have a “cyborg conversion chamber”: if you die your body
will be brought to a conversion chamber in the floor you're in and will become a cyborg, serving the enemy. Being
converted into a cyborg is the losing condition, and the punishment is being sent to the main menu and being forced

to load a save file.

Here's the catch: the “cyborg conversion chambers” are fashioned out of “restoration bays”, that means that dis-
abling the cyborg conversion process will allow the player to be immediately resurrected at the nearest restoration
bay, although they won’t start at full health. This rewards the player for finding such restoration bays by giving them

essentially infinite lives.

[Do you know more about this? You can contribute, this book is open source!]

12 GAME DESIGN TIPS 276

2D Game Development: From Zero To Hero

12.4 Loading Screens

Loading screens can be subject to design too and deciding what to put in them can really enhance the player

experience with your product.

12.4.1 What to put in a loading screen

“What can we put in a loading screen?” The answer may sound obvious to some, but a simple loading screen has a

lot going on. Let’s think about it, the most barren loading screen imaginable has at least two elements:

* An animation, to make the loading screen less boring and to ensure the player that our game didn’t lock up;

* Some kind of progress indicator, to let the player know how far the loading routine has gone.
But we can put lots more into it, let’s take a

* Story: In story-heavy games, it may be a good idea to put a reminder, a briefing or just a couple sentences
telling what’s happening story-wise. This was done in DOOM (2016).

* World Building: If the story is not-so-linear, a good idea could be just telling some facts about the world of
the game, what some primary NPCs like, their habits, etc...

* Tips: Putting some tips to help the player is one of the most common things done with loading screens, these
tips should be short and useful (no “press F to kill your enemy silently”, that’'s basic controls).

* Minigames: If your game may take a potentially long time to load, making the player play a simple mini-
game (maybe with rewards) while they wait. This was done on the Playstation 2 (and can be enabled on the
PC version) of Okami, where you can earn demon fangs with two minigames.

* Status-related sentences: This is something that can serve both as a “loading screen filler” as well as
“hidden debug feature”

- Actual loading information: Some players may like knowing what their PC is doing, so showing “load-
ing backgrounds” or “loading sound data” is a nice screen filler and can give your players a pointer in
case the game locks up while loading.

- Funny phrases: Instead of boring, actual loading information, you can put funny phrases like “inserting
buckazoids” (Space Quest, anyone?), if you have a list of funny phrases connected to actual loading

checkpoints, it will function as a small debug helper.

12.4.2 Letting the player “exit” the loading screen

In some cases it can be a good thing to have a loading screen fade into the next stage (or area) directly, while in
other situations it may be wiser to prompt the player to “exit” the loading screen themselves (maybe by a “Press

any key to continue” prompt).

The most important factor is whether the areas we will load into are safe: if the player is not ready, they may get

killed by enemies, and that feels unfair.
You should use a “press to continue prompt” when at least one of the following conditions applies:

* Any area we load to may be unsafe: We don't want our players to take a small break, walk around the

12 GAME DESIGN TIPS 277

2D Game Development: From Zero To Hero

room and come back to a dead character;
* There is text on the loading screen: Be it a tip, world building or story, the player may be reading it, and

taking away the text will annoy them.

12.4.3 Avoiding a loading screen altogether

Dynamic loading is a technique that is usually implemented in 3D games, but nothing stops you from using it in your

2D game!

The main issue is avoiding the player noticing that you unloaded a piece of the map that you previously visited,

while loading the next piece. This means:

* Avoiding “popping”: the player won’t appreciate seeing pieces of the game appear or disappear in front of
their eyes;
* Avoiding slowdowns: the player will immediately realize something is going on if the game slows down or

drops frames at a certain point. Plus it will feel like the game is not well-optimized.

Popping can be avoided in many ways, the most common one can be summarized with “what’s outside the screen
doesn’t exist”: if more than a single room fits in your screen, what's outside the screen space is a good candidate

for garbage collection.

An interesting idea could be making use of the player’s point of view to try and foresee which room the player will

head to next. With a clever use of doors and “cone of vision” you can unload rooms that are inside the screen space.

This can be done by “cutting” the player’s field of vision using doors and unloading a kind-of far-away room that

may be seen if the door was open.

Another way could be using so-called “points of no return”: rooms where you can’t go back, forcing the player to
continue on a certain almost-linear path. Be careful to not use too many of them, though! Players don’t really

appreciate seeing possibilities cut off from them.

‘ Elevators make good dynamic loading rooms: you're changing floors, so it makes sense

to not being able to see anything outside and having an elevator animating while chang-

ing floors can “hide” that a loading operation is happening.

12.5 Designing the story and gameplay flow

When we are preparing the terrain for our game, it is vital to have an idea of how the story and the gameplay will
unfold. There are lots of different types of gameplay, here we present some of them.

12.5.1 Linear Gameplay

This is the simplest type of gameplay design: all story events come one after the other, without any possibility of

deviating from the flow.

12 GAME DESIGN TIPS 278

2D Game Development: From Zero To Hero

Figure 221: Example Scheme of linear gameplay

Very much like a presentation, there is no branching, but such linearity can present some advantages, like ease of

testing and possibility of applying traditional storytelling tools which have been developed for thousands of years.

Table 42: Summary of linear gameplay

Gameplay Flow Type Linear Gameplay
Advantages Simple and cheap to test, traditional storytelling tools can be used easily.
Disadvantages No replayability, the gameplay may not feel very “interactive”

12.5.2 Branching gameplay

Going towards more complex flow types, we can use branching to allow for more interactivity.

Figure 222: Example Scheme of branching gameplay

This type of gameplay flow allows for a lot of interactivity by crafting the game in a way that player decisions have

a direct influence on the story flow.

This gameplay flow is harder (and thus more costly) to test, but allows for multiple endings.

Gameplay Flow Type Branching Gameplay

12 GAME DESIGN TIPS 279

2D Game Development: From Zero To Hero

Advantages Simple to implement, allows for a strong feel of interactivity, allows for a
lot of replayability by giving gameplay paths.

Disadvantages Hard and costly to test, can get out of hand if not managed correctly.

12.5.3 Parallel gameplay

The Branching gameplay flow has a huge disadvantage: it can be really hard to manage and doesn’t really suit well

“more linear” games.

Here's where parallel gameplay comes into play.

Figure 223: Example Scheme of parallel gameplay

In this flow style, there are branches running “parallel” to one another, but merge into “mandatory events” (which

are usually story related). This way we have varied gameplay while keeping the story essentially linear.

Gameplay Flow Type Parallel Gameplay

Advantages Moderately expensive to test, some traditional storytelling tools can be
used, story is easier to manage.

Disadvantages Replayability suffers from a story standpoint. If not well-made the player

will feel like the story is “on rails” from the get go.

12.5.4 Threaded gameplay

A different kind of gameplay is the “threaded” version, where there are many “beginnings”, “middles” and “endings”,

usually done by playing different characters.

Figure 224: Example Scheme of threaded gameplay

12 GAME DESIGN TIPS 280

2D Game Development: From Zero To Hero

This gives more replayability by giving many different and intertwining stories that allow to better understand a

“bigger picture” of some sort. This gameplay flow can be costly, since it requires testing all the possible paths and

crossings.

Gameplay Flow Type Threaded Gameplay

Advantages Good replayability, great for giving many “sides” to a story.
Disadvantages Testing all the paths can be costly, more difficult to manage.

Random Trivia!

This was done in Resident Evil 6, where different characters (and teams) have different

stories that overlap.

12.5.5 Episodic gameplay

| “

A more “object-oriented” approach to storytelling can be done by making small “episodes” (like mini-stories) with

many entry and exit points.

S g
OO

Figure 225: Example Scheme of episodic gameplay

We need to be mindful of loops (we don’t want to replay an episode that was already completed) when laying out
our episodes. This gameplay flow allows for great interactivity, but kind of “forces” replaying the game to see all

the possible episodes.

Gameplay Flow Type Episodic Gameplay
Advantages Great interactivity.
Disadvantages Tends to “force” replaying the game to see all episodes and paths, hard

(and thus costly) to test and manage.

12.5.6 Adding parallel paths

Nothing forbids us to mix and match methods to create something that suits our game better.

A very much appreciated and used gameplay flow is having a linear story with lots of “side quests” to give some

diversion from normal gameplay, as well as replay value, since people are bound to miss some side quests.

12 GAME DESIGN TIPS 281

2D Game Development: From Zero To Hero

12.5.7 Looping Gameplay

This is a typical gameplay flow of roguelike games, where the player has to play the same game many times,

beginning to end, eventually advancing a “bigger story”.

Main game

Runs

ORORG

OO CY

Figure 226: Example Scheme of looping gameplay with a overarching story

The most important thing when laying out a looping kind of gameplay is that the world needs to change between
each “run”: either by adding new weapons/items/collectibles or by unlocking a new part of the story (new levels, for

instance) or adding new characters. Each run should feel like unique by itself.

Gameplay Flow Type Looping Gameplay
Advantages Great replayability.
Disadvantages Needs a lot of care in laying out how the runs evolve between one and the

next: if all the runs “feel the same” the player will abandon the game.

12.5.7.1 Soft-reset mechanics

Pretty often games adopting looping gameplay flow have one or more “soft-reset” mechanics. This mechanic consist

in starting the whole game from the beginning, while having some advantages that come from the previous runs.

A soft-reset run may see:

* Main character having a higher experience gain;
» Starting with a “box of tools”. For instance you start the new run with a weapon that had to be unlocked in
the previous run;

* Main character starting with a higher attack;

This adds a new dimension to the gameplay: funnily enough, a player may progress through the entire game faster

by resetting it.

12 GAME DESIGN TIPS 282

2D Game Development: From Zero To Hero

This adds more decision making (thus more power) to the player, who can take the risk and “invest time"” by soft-
resetting the game (where the investment is the time spent getting back to the point they were before) to have

higher gains in the long run.
Bonus points if you can add a reason for soft-resetting in the game’s story.

There is no real limit to the quantity of soft-resets you can stack on top of each other, although it's advisable that

each soft-reset has a suitable “reward” and different “reset harshness”.

For instance you can have a soft-reset where you lose your weapons and levels, but have a 2% attack bonus. Then
you can have a second level of soft reset where you lose money, weapons, levels and something else in exchange

for 10% higher experience gain. Balance is the key.

12.6 Some game genres and their characteristics
12.6.1 Roguelikes and Rogue-lites

Roguelike games are usually games that involve dungeon-crawling and procedurally generated levels, usually with

a fantasy background. In this small section we will take a look at the features that characterize roguelike games.

The most accepted interpretation of a roguelike game is the “Berlin Interpretation”, which is based on the features
that follow. When games diverge from these features, but are still loosely based on the classic roguelike design,

they are usually called “rogue-lites” or “roguelike-likes”.

12.6.1.1 Use of pseudo-randomness and procedural generation

This is done to increase replayability: the dungeons (or levels alike) are generated procedurally, with a tinge of
randomness added to them. Joining procedural generation and pseudo-randomness is better than simple pseudo-
randomness, since the rules applied will make the level beatable without special equipment, as well as lead to more

aesthetically pleasing levels overall.

12.6.1.2 Permadeath

In the great majority of roguelike games, the death of a character is permanent. When a character dies, the player

will have to begin a new “run”: the levels will be generated anew and the available loot will change too.

Usually permadeath is joined with an erasure of the savefile connected to the “failed run”, this avoids so-called “save-
scumming”: a practice where players would load back their savefile repeatedly to achieve better results (which is

usually considered akin to cheating, in the roguelike field).

Another way to stop “save-scumming” is deleting the savefile when loading it, so when you save the only thing you

can do to keep your savefile is exiting the game.

Permadeath makes the “save game” functionality more of a “suspension of the gameplay” instead of giving the

player a recoverable state they can limitlessly return to.

12 GAME DESIGN TIPS 283

2D Game Development: From Zero To Hero

12.6.1.3 Turn-based Gameplay

Like tabletop games, the gameplay of roguelikes is usually turn-based: this allows the player to take as much time

as needed to take a decision.

12.6.1.4 Lack of mode-based gameplay

Roguelikes don’t have a real concept of “progression”: they allow you to do anything from the get-go, without

blocking any action just because you're at a certain point in the game.

12.6.1.5 Multiple ways to accomplish (or fail!) a task

Roguelikes usually allow you to complete a task in many different ways, so many in fact that it seems the developers

thought of everything. Let's take for example a locked door, a roguelike game would give you many options:

* Find the key or trigger to open such door;
e Lockpick it;

e Burn it down;

¢ Find a way around it;

¢ Kick it down;

This also means that you have to be careful with your actions: if a weapon freezes entities when it touches their

flesh, you better have a pair of gloves handy (or you may end up frozen yourself!).

12.6.1.6 Resource Management is key

Resource Management in roguelike games is vital: usually they feature a hunger mechanic, as well as healing items,
weapons and various loot that the player must sort through to be able to survive. The player will be forced to leave
some loot on the floor of the dungeon, or choose between a known weapon and something unknown that may be

weaker or “cursed”.

12.6.1.7 Peace was never an option

Most roguelike games are based on hack and slash mechanics, where your main goal is killing monsters. In this
kind of games, “peaceful options” don’t exist (although they may exist, in a somewhat temporary fashion, to put
leverage on some stealth mechanics - like getting a better weapon to kill a powerful enemy by first sneaking around

them).

12.6.1.8 Dealing with the unknown

Roguelike games are heavily based on the concept of “unknown”: you need to explore an unknown place, finding
loot which powers are unknown and should be identified. Magical items change with every run, and give just vague

descriptions (like “a red potion”) which may heal in one run and kill you in another.

12 GAME DESIGN TIPS 284

2D Game Development: From Zero To Hero

Furthermore items can be subject to change, acquiring or losing traits due to environmental alterations or player

modification.

12.7 Tips and Tricks
12.7.1 General Purpose
These tips and tricks are good for any kind of game: from the simplest platformer to twin stick shooters, to strategy

games. These are good starting points to make your game feel more complete and fun to the player.

12.7.1.1 Make that last Health Point count

Players love that rush of adrenaline they get when they escape a difficult situation with just one health point. That
“just barely survived” situation can be “helped” by the game itself: some programmers decide to program the last

HP in a special way.

Some prefer giving the last health point a value that is higher than the other health points (kind of like a “hidden

health reserve”), others instead prefer giving a brief period of invincibility when that last “1HP” threshold is hit.

These small devices allow you to give players more of those “near death” experiences that can give players that
confidence boost to keep them playing through a hard stage, while at the same time, reducing the chance that they

will rage-quit.

Random Trivia!

This was implemented in both DOOM and Assassin’s creed, where the last portion of
health had more “hit points”.
In Bioshock when you take your last point of damage, you get about 1 or 2 seconds of

invulnerability.

12.7.1.2 Avoiding a decision can be a decision itself

An interesting way to make the characters from a game seem more real, is registering the “lack of response” or

“lack of action” in the game’s Al or dialogue tree.

This means that “ignoring” has consequences, and inaction is in and itself an action of “doing nothing” which should
be accounted for, just like ignoring someone in real life can have serious consequence or where someone may prefer

to do nothing instead of taking one of many bad decisions.

Random Trivia!

This trick is used in the game “Firewatch”, where not responding to a dialogue prompt

is a noted decision.

12 GAME DESIGN TIPS 285

2D Game Development: From Zero To Hero

12.7.1.3 Telegraphing

Players hate the feeling of injustice that pops out when a boss pulls out a surprise attack, that’s why in many games

where precise defense movement is required bosses give out signals on the nature of their attack.

This “telegraphing” technique, allows for that “impending danger” feel, while still giving the player the opportunity

to take action to counteract such attack.

Telegraphing is a nice way to suggest the player how to avoid screen-filling attacks (which would give the highest

amount of “impending danger”).

Malfunctioning cannon,
there will be a safe zone
here

Uo7 3jes

Figure 227: Example of a telegraphed screen-filling attack in a shooter

Another form of telegraphing is showing where the attacks will come from, using a “charging up animation”: this

will attract the player’s attention towards those spots and help them gauge the next attack.

Random Trivia!

A form of telegraphing was used in the Bioshock series: the first shots of an enemy

against you always miss, that is used to avoid “out of the blue” situation, which some-

how communicates both the presence and position of enemies.

12.7.1.4 Minigames

Many times underrated, minigames are a really vital part of a great game experience.

Minigames can be a fun diversion from the main game, extending the engagement time, as well as a priceless
resource for bigger open-ended games: you can use common “low-level” materials to feed into the minigame to get

better materials, weapons or prizes.

This is a win/win situation, you throw away unused materials to get useful tools, materials or cosmetics, also playing
into the mechanism that maybe some people will get things wrong and need the “low-level” materials again, further

lengthening the engagement of your game.

12 GAME DESIGN TIPS 286

2D Game Development: From Zero To Hero

12.7.1.5 When unlockables are involved, be balanced

When you're creating a game that involves “unlockables” (for instance a roguelike where you unlock more items
for the upcoming runs), you should absolutely balance your unlockables in a way that compels the player to unlock

them.

If you hide a “negative item” behind an unlockable, the player will actively avoid doing the actions that lead to

unlocking such item. This is especially true now, in the age of widespread Wikis.

If you have to implement unlockables you should either:

* Make the unlocked item a “good item”: this will naturally compel the player to unlock such item to make
the subsequent runs easier and more fun and varied;

* Make the unlocked item a “neutral item” with situational good outcomes: the player will be less
attracted by these items, but the situational good outcomes (we can call them “interactions” or “synergies”)
can make the player willing